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Background

The classical Hardy-Littlewood maximal operator M is defined by setting

M(f)(x) := sup
Q∋x

1
|Q|

∫
Q
|f(y)| dy, ∀ x ∈ Rn and f ∈ L1

loc (Rn).

Let w ∈ L1
loc (Rn) and w ∈ (0,∞) almost everywhere. Given p ∈ [1,∞)

and a measurable set E, let w(E) :=
∫

E w(x) dx and let f belong to
weighted Lebesgue spaces Lp

w(Rn), i.e.,∫
Rn

|f(x)|pw(x) dx < ∞.
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Background
As one of fundamental results in harmonic analysis, it is well known that:
• If p ∈ (1,∞), then the strong-type weighted norm inequality∫

Rn
[M(f)(x)]p w(x) dx ≲

∫
Rn

|f(x)|pw(x) dx, (1.1)

holds true iff w belongs to the Muckenhoupt class Ap, i.e.

[w]Ap := sup
Q

[
1
|Q|

∫
Q

w(x) dx
] [

1
|Q|

∫
Q

w(x)−
1

p−1 dx
]p−1

< ∞

with the supremum taken over all cubes Q;

• If p = 1, then the weak-type weighted norm inequality

w ({x ∈ Rn : M(f)(x) > t}) ≲ 1
t

∫
Rn

|f(x)|w(x) dx, ∀ t ∈ (0,∞), (1.2)

holds true iff w belongs the Muckenhoupt class A1, i.e.

w : [w]A1 = ess sup
x∈Rn

Mw(x)
w(x) < ∞.
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Background
• The original proof was given by Muckenhoupt, TAMS, 1972, based

on an interpolation argument and a self-improving property of Ap
weights:

w ∈ Ap implies w ∈ Ap−ε for some ε > 0.

• Later, Coifman-Fefferman, Studia Math., 1974, gave a simplified
proof by a crucial reverse Hölder inequality: for any w ∈ Ap with
p ∈ [1,∞), there exists a γ > 0 such that, for any cube Q ⊂ Rn

[
1
|Q|

∫
Q

w(x)1+γ dx
] 1

1+γ

≲ 1
|Q|

∫
Q

w(x) dx. (1.3)

• After that, an elementary proof for (1.1) avoiding the reverse Hölder
inequality was provided by Christ-Fefferman, PAMS, 1983, based
essentially on the Calderón-Zygmund decomposition.
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Given a set E ⊂ Rn and δ ∈ (0,n], the Hausdorff content Hδ
∞(E) of E of

dimension δ is defined by setting

Hδ
∞ (E) := inf

{∑
i

|Qi|δ/n : E ⊂
⋃

i
Qi

}
,

where the infimum is taken over all finite or countable cubes coverings
{Qi}i of E.

• If δ = n, the Hausdorff content Hn
∞ is equivalent to the Lebesgue

measure on Rn.

For p ∈ (0,∞) and a function g on Rn, its Choquet integral with respect
to Hausdorff content Hδ

∞ is defined as∫
Rn

|g(x)|p dHδ
∞ := p

∫ ∞

0
tp−1Hδ

∞({x ∈ Rn : |g(x)| > t}) dt.

• Due to the monotonicity of set function Hδ
∞, the Choquet integral is

well defined for all functions, even not measurable with respect to
Lebesgue measure.
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• Unfortunately, this Choquet integral is not linear, even not sublinear:∫
E

f(x) dHδ
∞ +

∫
E

g(x) dHδ
∞ ̸=

∫
E
[f(x) + g(x)] dHδ

∞

≤ 2
[∫

E
f(x) dHδ

∞ +

∫
E

g(x) dHδ
∞

]
.
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Equivalent dyadic version

• ( Adams,1998) The dyadic Hausdorff content H̃δ
∞:

H̃δ
∞ (K) := inf

{ ∞∑
i=1

[l(Qi)]
δ : K ⊂

∞⋃
i=1

Qi

}
,

where {Qi}i are dyadic cubes of Rn.

• It was claimed by Adams that H̃δ
∞ is capacity in the sense of

Choquet, however, Yang and Yuan (2008) proved that this is true
only when n − 1 < δ ≤ n.

• ( Yang and Yuan, 2008) A new dyadic Hausdorff content:

H̃δ
∞,0(K) := inf

{ ∞∑
i=1

[l(Qi)]
δ : K ⊂

(∞⋃
i=1

Qi

)◦}
,

where {Qi}i are dyadic cubes of Rn.
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• The Choquet integral with respect to H̃δ
∞,0 is sub-linear. By this,

we have ∫
E

∑
j∈N

fj(x) dHδ
∞ ≤ C(n, δ)

∑
j∈N

∫
E

fj(x) dHδ
∞.
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The Hausdorff content and Choquet integral have many applicaitions in
- Morrey space, Besov-Triebel-Lizorkin type space and Qα space· · ·
- Harmonic analysis and nonlinear potential theory; see Adams and L.

Hedberg, Function Spaces and Potential Theory, Grundlehren, 314.
Springer-Verlag, Berlin, 1996

- Quasilinear elliptic equations; see, for example, Kilpeläinen-Malý,
Acta Math. 172 (1994), and Labutin, Duke Math. J. 111 (2002)

- Continuous time dynamic and coherent risk measures in finance; see,
for example, Denis-Hu-Peng, Potential Anal. 34 (2011)

- Bayesian decision theory, subjective probability and robust
optimization; see, for example, Bertsimas-Brown-Caramanis, SIAM
Rev. 53 (2011).
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2. Our purpose—what do we want to do?
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In this talk, we are interested in identifying the conditions on the function
w such that the weighted norm inequality∫

Rn
[M(f)(x)]p w(x) dx ≲

∫
Rn

|f(x)|pw(x) dx,

remains true when Lebesgue measure dx is replaced by Hausdorff
contents dHδ

∞, i.e., in the Choquet integral setting.

Then, we are further devoted to build up some important properties of
the class of these functions w, such as

• the self-improving property, see Muckenhoupt, TAMS, 1972
• reverse Hölder inequality, see Coifman-Fefferman, Studia Math.,

1974
• Jones’ factorization theorem, see Jones, Ann. of Math., 1980.
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Formulate the question
More precisely, the first purpose of this talk is to characterize the weight
w on Rn such that there exists a positive constant K satisfying∫

Rn

[
MHδ

∞
(f)(x)

]p w(x) dHδ
∞ ≤ K

∫
Rn

|f(x)|pw(x) dHδ
∞, (2.1)

when p ∈ (1,∞), and when p = 1, for any t ∈ (0,∞),

wHδ
∞

{
x ∈ Rn : MHδ

∞
(f)(x) > t

}
≤ K

t

∫
Rn

|f(x)|w(x) dHδ
∞. (2.2)

Here and thereafter,

wHδ
∞
(F) :=

∫
F

w(x) dHδ
∞, ∀F ⊂ Rn, (2.3)

and MHδ
∞

is the capacitary Hardy-Littlewood maximal operator with
respect to Hδ

∞ defined as

MHδ
∞

f(x) := sup
Q∋x

1
Hδ

∞(Q)

∫
Q
|f(x)| dHδ

∞.
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First try

To settle this problem, it might seem intuitive and immediate to adapt
the aforementioned methods for the classical Ap weight theory to the
setting of Choquet integrals and capacitary maximal operators. However,
upon closer examination, one can find that these approaches are not
feasible and the thing is far away from immediate.
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First try

A fundamental difficulty lies in the absence of linearity for the Choquet
integrals, that is, for any non-negative functions {fj}j∈N defined on E,∫

E

∑
j∈N

fj(x) dHδ
∞ ̸=

∑
j∈N

∫
E

fj(x) dHδ
∞.

These two quantities are even not equivalent. Indeed, for any M > 0,
there exist non-negative functions {fj}j∈N and E, such that∑

j∈N

∫
E

fj(x) dHδ
∞ > M

∫
E

∑
j∈N

fj(x) dHδ
∞.

This makes that the aforementioned crucial techniques such as,
self-improving property Ap ⇒ Ap−ε, reverse Hölder inequality and the
Calderón-Zygmund decomposition, can not be extended to the current
Hausdorff content and the Choquet integral setting directly.
Consequently, new techniques and approaches are required.
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3. Main Results
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Capacitary Muckenhoupt’s theorem

Theorem (Huang-Zhang-Z., 2025)
Let δ ∈ (0,n], p ∈ (1,∞) and w be a weight. Then the following
statements are equivalent
(i) the strong-type (p, p) inequality (2.1) holds;
(ii) there exists a positive constant K such that

wHδ
∞

{
x ∈ Rn : MHδ

∞
(f)(x) > t

}
≤

K
tp

∫
Rn

|f(x)|pw(x) dHδ
∞, ∀ t ∈ (0,∞);

(iii) w ∈ Ap,δ, i.e.,

[w]Ap,δ := sup
cube Q ⊂Rn

{ 1
Hδ

∞(Q)

∫
Q

w(x) dHδ
∞

}{ 1
Hδ

∞(Q)

∫
Q

w(x)−
1

p−1 dHδ
∞

}p−1

<∞. (3.1)

A weight w satisfying (3.1) with p ∈ (1,∞) is called the capacitary
Muckenhoupt Ap,δ-weight with respect to the Hausdorff content Hδ

∞,
denoted as w ∈ Ap,δ.
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Capacitary Muckenhoupt’s theorem

Theorem (Huang-Zhang-Z., 2025)
Let δ ∈ (0,n] and w be a weight. Then the following statements are
equivalent
(i) the weak-type (1, 1) inequality (2.2) holds;
(ii) w ∈ A1,δ, i.e.

[w]A1,δ := inf
{

K ∈ (0,∞) : MHδ
∞

w(x) ≤ Kw(x) for Hδ
∞−a. e.

}
<∞. (3.2)

A weight w satisfying (3.2) is called the capacitary Muckenhoupt
A1,δ-weight with respect to Hδ

∞, denoted as w ∈ A1,δ.
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A corollary
As an application, we obtain the following weighted norm inequalities for
classical Hardy-Littlewood maximal operators M on Choquet integrals by
an interpolation argument. Let δ ∈ (0,n].

Corollary (Huang-Zhang-Z., 2025)
(i) If w ∈ Ap,δ with p ∈ (1,∞) and q ∈ [pδ

n ,∞), then∫
Rn

|Mf(x)|qw(x) dHδ
∞ ≤ K

∫
Rn

|f(x)|qw(x) dHδ
∞.

(ii) If w ∈ A1,δ and q ∈ ( δn ,∞), then∫
Rn

|Mf(x)|qw(x) dHδ
∞ ≤ K

∫
Rn

|f(x)|qw(x) dHδ
∞.

(iii) If w ∈ Ap,δ with p ∈ [1,∞) and q ∈ [pδ
n ,∞), then

wHδ
∞
({x ∈ Rn : Mf(x) > t}) ≤ K

tq

∫
Rn

|f(x)|qw(x) dHδ
∞.
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An example of Ap,δ

Capacitary Muckenhoupt weight class Ap,δ

[w]Ap,δ := sup
cube Q ⊂Rn

{
1

Hδ
∞(Q)

∫
Q

w(x) dHδ
∞

}{
1

Hδ
∞(Q)

∫
Q

w(x)−
1

p−1 dHδ
∞

}p−1

[w]A1,δ := inf
{

K ∈ (0,∞) : MHδ
∞

w(x) ≤ Kw(x) for Hδ
∞−a. e.

}

When δ = n, the weight class Ap,δ goes back to classical Muckenhoupt
weight class Ap.

Proposition
Let δ ∈ (0,n] and p ∈ [1,∞). For any given α ∈ R, define w(x) := |x|α,
∀ x ∈ Rn. Then w ∈ Ap,δ if and only if α ∈ (−δ, δ(p − 1)).
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Monotonicity of capacitary Muckenhoupt weight class

• Ap,δ is monotonically increasing with respect to the parameter p,
i.e., Ap1,δ ⊂ Ap2,δ when 1 ≤ p1 ≤ p2 < ∞.

• Then, a natural question is whether Ap,δ also enjoys monotonicity
with respect to the dimensional parameter δ?
The answer is YES:

Proposition
Let 0 < δ < β ≤ n and p ∈ [1,∞). Then

Ap,δ ⫋ Ap, β

and [w]Ap, β ≤ K[w]Ap,δ .

• For any δ ∈ (0,n),
Ap,δ ⫋ Ap, n = Ap
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Remarks

We point out that our theorems go back to the classical Muckenhoupt’s
theroem.

- when δ = n, the Hausdorff content Hn
∞ is equivalent to the

Lebesgue measure
- capacitary maximal operator MHn

∞
is just the classical maximal

operator M;
- the weights class Ap,n = the classical Muckenhoupt class Ap

To show the above two theorems, we develop a new approach in the
Choquet integral setting where the classical methods no longer applicable.
Moreover, even when returning to the classical Ap weight setting, the
approach developed provides new and broadly applicable proofs, which
avoid linearity of integrals, the countable additivity of measures, or the
Fubini theorem.
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4. Main difficulty in proofs
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The idea— part I

(i) In the setting of Lebesgue measure dx, via the Fubini theorem, for a
weight w(x) and f ∈ L1

w(Rn),∫
Rn

|f(x)|w(x) dx =

∫
Rn

|f(x)|dw.

But, if 0 < δ < n, the following kind of the Fubini theorem∫
Rn

∫ ∞

0
f(x, t)w(x) dt dHδ

∞ ∼
∫ ∞

0

∫
Rn

f(x, t)w(x) dHδ
∞ dt.

fails in general, and hence the equivalence∫
Rn

|f(x)|w(x) dHδ
∞ ∼

∫
Rn

|f(x)|dwHδ
∞

(4.1)

does not hold for general weight w.
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The idea— part I

Surprisingly, given p ∈ [1,∞), we discover, in the proposition below, that
the condition w ∈ Ap,δ ensures (4.1).

Proposition
Let δ ∈ (0,n], p ∈ [1,∞) and w ∈ Ap,δ. Then there exists a positive
constant K(p) such that, for any f ∈ L1

w(Rn,Hδ
∞),

1
4

∫
Rn

|f(x)|w(x) dHδ
∞ ≤

∫
Rn

|f(x)| dwHδ
∞

≤ K(p)[w]
1
p
Ap,δ

∫
Rn

|f(x)|w(x) dHδ
∞.

This proposition plays a pivotal role throughout the proof, which partly
fills the gap left by the absence of the Fubini theorem in the weighted
Choquet integral setting.
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The idea — part II
(ii) Inspired by the idea from Calderón-Zygmund decomposition
technique, we prove a “sparse covering lemma” in the context of
Hausdorff contents as follows.

Proposition
Let δ ∈ (0,n] and E be a subset of Rn satisfying H̃δ

∞(E) < ∞. Then
there exists a subset F ⊂ Rn and a family {Qj}j∈N of non-overlapping
dyadic cubes in Rn such that
(i) E ⊂ (

⋃
j∈N Qj) ∪ F and H̃δ

∞(F) = 0;
(ii)

∑
j∈N H̃δ

∞(Qj) ≤ 2H̃δ
∞(E);

(iii) for any j ∈ N, we have H̃δ
∞(Qj) ≤ 3H̃δ

∞(Qj ∩ E).

• This proposition seems to be new even when reduced to the setting
of classical Lebesgue measure, i.e., in the case of δ = n.

• It serves as a partial substitute for the linearity property, which
generally fails to hold for the Choquet integral.
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Applying the ”sparse covering lemma”, we obtain the following
conclusion, which realizes the interchange of summation and integration
with respect to Hδ

∞ in a certain sense.

Lemma
Let δ ∈ (0,n], p ∈ [1,∞), E ⊂ Rn and w ∈ Ap,δ satisfying∫

E
w(x) dHδ

∞ < ∞.

Then there exist a family {Qj}j∈N of non-overlapping dyadic cubes and a
subset F ⊂ Rn with Hδ

∞(F) = 0 such that E ⊂ (
⋃

j∈N Qj)
⋃

F and

∑
j∈N

∫
Qj

w(x) dHδ
∞ ≤ K(n, δ, p)[w]Ap,δ

∫
E

w(x) dHδ
∞.
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The idea — part II

Moreover, the following conclusion, with a weighted packing condition for
a family {Qj}j of non-overlapping cubes, becomes essential. It serves as
a partial substitute for the linearity property.

Proposition
Let δ ∈ (0,n], p ∈ [1,∞) and w ∈ Ap,δ. Let {Qj}j∈N be a family of
non-overlapping dyadic cubes of Rn. If there exists a constant β > 0
such that, for each dyadic cube Q,∑

Qj⊂Q
wHδ

∞
(Qj) ≤ β wHδ

∞
(Q),

then∑
j∈N

∫
Qj

|f(x)|w(x) dHδ
∞ ≤ max{1, β}[w]1+

1
p

Ap,δ

∫
∪j∈NQj

|f(x)|w(x) dHδ
∞.
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5. Applications to theory of capacitary
Muckenhoupt weight class.
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As a result of the weighted norm inequality, we obtain the Jones
factorization for Ap,δ

Theorem
Let δ ∈ (0,n] and p ∈ [1,∞). Then w ∈ Ap,δ if and only if there exist
two weights w0, w1 ∈ A1,δ such that w = w0w1−p

1 .
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The reverse Hölder inequality for Ap,δ

Theorem
Let δ ∈ (0,n], p ∈ [1,∞) and w ∈ Ap,δ. Then there exists positive
constants K = K(n, δ, p, [w]Ap,δ ) and γ = γ(n, δ, p, [w]Ap,δ ) ∈ (0, 1) such
that, for every cube Q,[

1
Hδ

∞(Q)

∫
Q

w(x)1+γ dHδ
∞

] 1
1+γ

≤ K
Hδ

∞(Q)

∫
Q

w(x) dHδ
∞. (5.1)

Corollary
Let δ ∈ (0,n], p ∈ [1,∞) and w ∈ Ap,δ. Then there exists a constant
γ ∈ (0, 1) such that w1+γ ∈ Ap,δ.
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The self-improving property for Ap,δ

Theorem
Let δ ∈ (0,n], p ∈ (1,∞) and w ∈ Ap,δ. Then there is a q with
1 < q < p such that w ∈ Aq,δ.
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Remarks

• The above theorems on capacitary Muckenhoupt weight class are
proved with the help of capacitary Muckenhoupt’s theorem and the
new methods. This is different with the classical cases, in which
these properties imply Muckenhoupt’s theorem.

• When δ = n, the above theorems return exactly to classical theory
of Muckenhoupt weight class Ap, that is,

– the self-improving property, see Muckenhoupt, TAMS, 1972
– reverse Hölder inequality, see Coifman-Fefferman, Studia Math., 1974
– Jones’ factorization theorem, see Jones, Ann. of Math., 1980.

• When δ ∈ (0,n), the classical methods no longer apply. In this case,
our proofs avoid linearity of integrals, the countable additivity of
measures, or the Fubini theorem.
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Conclusion

- Introduce a novel capacitary Muckenhoupt weight class and build up
the Muckenhoupt’s theorem.

- Develop a new approach in the Choquet integral setting where the
classical methods no longer apply, avoiding linearity of integrals, the
countable additivity of measures, or the Fubini theorem.

- Extend the classical theory beyond measure-theoretic frameworks.

- Establish some properties of capacitary Muckenhoupt weight class
the strict monotonicity on the dimension index δ;
the Jones factorization theorem;
the reverse Hölder inequality;
the self-improving property.

Thank you!

C. Zhuo (Hunan Normal University) Capacitary Muckenhoupt weights 35 / 35



Conclusion

- Introduce a novel capacitary Muckenhoupt weight class and build up
the Muckenhoupt’s theorem.

- Develop a new approach in the Choquet integral setting where the
classical methods no longer apply, avoiding linearity of integrals, the
countable additivity of measures, or the Fubini theorem.

- Extend the classical theory beyond measure-theoretic frameworks.

- Establish some properties of capacitary Muckenhoupt weight class
the strict monotonicity on the dimension index δ;
the Jones factorization theorem;
the reverse Hölder inequality;
the self-improving property.

Thank you!

C. Zhuo (Hunan Normal University) Capacitary Muckenhoupt weights 35 / 35


	Background and classical results
	Our purperse
	Main results
	Main difficulty in proofs
	Applications

