> AR T AR AR A — A it

RAA: BFR, FRME, LHBF
2025.12.21

20254L M A Fe 0 AT FH SF F H B3

BB EAA T AR 0 — 24 it




Aju(x,y) =f(x,y),(x,y) € BX*x B.

u(x,y) = (f(-,y) *T) (x).

75"(31 = BR(X0)7F‘752 = BzR(Xo)y‘]Rn‘:Pﬂﬁ/l\]—é]‘cﬂi, ’f?i‘ii’tf e C” (82),
O<a<l, #HBAB, L& Lu:=(f*I)(x), Mu e C>(By).

[1] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer, 1983. 319

(2001), no. 1, 89 - 149.
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FAL. f(x,
A2, f(x,
7 A23. A A

) e C¥(BY), u(x,:) € C*(BY)?
-) € LP, Morrey, BMO, u(x,-) €7
BARFRTER L HALM .

BHRRAR T AR RN — 2t




SA5E A A HS der i1

A KT h s H AL R GG HOlder 4+

RQAR"EETE, O<a<l. W R HEFH#C,>0, £4F5F
FVx, y€Q, #HE

If(x) = f(¥)| < Calx —y|%,
W AR QLR Holderi% 4269,

A Tr AL AR B — He it



&5 i T A2 R A9 Holder /& 7t

A KT h s H AL R GG HOlder 4+

FTQARIEETE, O<a<l. e R HFAQWIEZT X TFE L
R Holderi& %04, Ay 3 fEQ LR B3R HOlder % 4.

BYAR T OE—F &, QAR HE—T &, O<a<l. eRAGEF
é’%’(Ca>0, ﬁf%'-iﬂ'ﬂ"Vxl, Xy € QX%aVyl, Y € Q, /r%/i

If(x,y1) — F(x,%2)] < Calyr — y2|%,
W AR3FFVx € QF, f(x, ) EQ L& —Z Holder% 449,

AN T AL iR ) — B fE Tt



&5 i T A2 R A9 Holder /& 7t

A KT h s H AL R GG HOlder 4+

e

BB = Brxo) AR t94E— 3%, & F KB LETRELA R, uktd
HFEBEMFMES. Mue C1(B), AitFx € Bfeit &

#i=1,...,n, A
) _ [T yar
X; B Xi
a;f::) _ /B r(g; y) [F(t) — F(x)] dt — F(x) /881 (x — t)vi(t)dS:,

X ¥ B RAEE— A ABIR, HEFAERBIIEIEA0, vi(t) R
ROBL % F t#h %4z 5h ik B F NP E.

BHRAR T AR R — 2



&4 AT A2 e HO1der it

A KT h s H AL R GG HOlder 4+

31321, 31324.2)]

3B = Br(xo) RRM P AE—3K, &3 f 5 B_EA R B B3 Holder ik 4,
uR B HFAEBEGF Y. Mue C*(B), Au=f, BxtFVxeB
i j=1,....n &

2u(x 2 (x — X —
gx,-éxj :/B 0 gf(,@xjt) [F(£) — F(x)] dt — F(x) /681 %Xit)yj(t)dst,

BB A OABIME—R, HEFEBIIERHO, v(t)RAROB %
Frih E sk N2

[1] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer, 1983. 319

(2001), no. 1, 89 - 149.
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75 A2 fif f9Holder & 41

I~ AN 77 A2 F 69 Holder 4 11

51 323[1, 5|324.4.]
& By = Br(x0)#2 B> := Bor(x0) AR BANF S, BIXf € C*(By),
O<a<l, FHEB L& Lu:=(f+T)(x), Mue C>¥(B).

[1] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer, 1983. 319

(2001), no. 1, 89 - 149.
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S5 A AR HSder 53t

A KT h s H AL R GG HOlder 4+

<31

‘i>'}1C0<Oé<1, Bf = BR(X())?]C‘UBQ( = B2R(XO)7FER,7LPQ(J%/‘\]—§]'U}£;

BY := Bp(yo) RR™ ¥4 —3k, XA XABY x BY LRk

HEBS x BY L& Lu(x,y) = (f(-,y) *T) (x).

(i) %2R FVy € BY, (-, y) By £ & —H Holderi% 449, W3 T4+ &
8 % EH47| 8| < 242y € BY, DSu(-, y) & By ER& — K Holderi% 4: 49,
(ii) 4= Rt FVy € BY, & f(x,y) X TxEBy LK FAoT ey, A
st FVx € BS, f(x, )EBY L& —HHolderi# %:649, Mt FAEEH ST
#|B| < 1Fex € B, DS u(x, )£ BY L& —H Holderi 4:49.

R AN T A iR ) — B fE Tt



S5 A AR HSder 53t

A KT h s H AL R GG HOlder 4+

(iii) 4= R FVx € B, f(x, ) EBY L& —H Holderi% %: 49,

fel>(BfxB), #8xFVyeB, f(,y)EB L& —

B Holderi% %269, M3t FHE&EWi=1,... nfex € B, y€ BY, A
ou

5;;6 Ca(BfX Byy

BHRAR T AR R — 2



b A E A AL S HOder b it

A KT h s H AL R GG HOlder 4+

(iv) %= X3+ FVx € B,

(a)f (x, ) EBY L& —HHolderi% 4269,

(b)f € L= (B x BY);

(c) % FVy € BY, f(-,y)EBS L& —Z Holderi 4: 49,
JR"U“H"X1,X2 € Bf, yi,¥2 € BY, x1 #Xzﬂg‘?i,j =1,...,n, *

82U(X1,y1) . 82U(X27,\/2)

O0x;0x; 0x;0x;
<Coa,RMaX{L, [[f]] joo (grsmr) } (It = 22| 4 [y = yol®
Jr|)/1 — )/2|a> _
X1 — x|

A B HIAAR F ALY — e f it



Ak 7y AL fi# f9Holder f& 41

A KT h s H AL R GG HOlder 4+

S0 R AR BAEERANRQY C BiA=Qs O By kB AR B A=BS, M=
1R L5 AT IR R .

#HA69 2 3212 3 GilbargA=Trudinger 3| 224.4[1]89 46 &, KA1 RIX
AT X TH Uz B RN Fe—WrHolderiE 51, L4587 A4
A FIAZ B K T 52 Holder % 4 45 it Fe 2 /AR T 1] L 8GR
g, AR ZAE T 25 F G F a9 X Tt =M FH
B RARE ] LA A0 RAAM B — B . T @ &N 16942
£ B Morrey= 1d], [P 18], Sobolevs A #2BMO = IA].

[1] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer, 1983. 319

(2001), no. 1, 89 - 149.
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w75 A2 i 69 Moeery, LP, Sobolev/s it

o H A4 T A2 fE B9 Moeery, LP, SobolevA®

& L4[2, p. 13]
B = Br(x) RR"FH—K, 3 THE0<q, p < co. MMPAZEAE L
A

ME(B) = {g € Lj,.(B) : llgllmz(E)<oo )
A

1
q
1_1
llgllrmezs) == sup [Br(z)|7 "7 (/B()Ig(t)lth> :

B.(z)CB

[2] Sawano Y. Morrey Spaces: Introduction and Applications to Integral Operators and PDE's, Volume |. London:

Taylor & Francis, 2020.
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w75 A2 i 69 Moeery, LP, Sobolev/s it

o H A4 T A2 fE B9 Moeery, LP, SobolevA®

% X5(3, p. 60]

FaH % EIAR, mAadE i EH, 1< p<oo. WSobolevs ] & LA :
WmP(R") := (g € LP(R")|D?g € LP(R"),0 < |a| < m),
L1 < p<oofi,

1
b
lellmp = > [ID%lI5|
0<|e|<m
% p = ool
m,o0 +— a D* 009
gllmo0 :=  max [[D%ll
D45 692 55 5 XK.

[3] Adams R A, Fournier J J F. Sobolev Spaces. Amsterdam: Elsevier\ Academic Press, 2003.
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&5 F a4 T A2 i 69 Moeery, LP, Sobolev /s it

o H A4 T A2 fE B9 Moeery, LP, SobolevA®

WB* = Br(x) RR" T HE—, B := Bp(yo) RR™ £ —2£,
1<gq,p<oo. &f(x,y)%k T xEB J:/ﬁﬂﬂ’]‘ﬁ“ T AR 1A
B* x BY & Xu(x,y) = (f(,y)*T)(x).

(i) 4= R3tFVx € BY, f(x,-) € ME(BY), W3 FAEEH % £ 35
#R|B] < 142Vx € B*, HDJu(x,-) € ME(BY).

R AN T AL iR ) — B fE Tt



o 75 A2 fi§ 69 Moeery, LP, Sobolevf# it

o H A4 T A2 fE B9 Moeery, LP, SobolevA®

(i) Z=RBHEA (x, y) it

(a) f(x,y) X TxERB LA R EE3HOIder % %2,
(b) 3 FVx € B, f(x,-) € MP (BY);

(c) ¥ TVx € BAny € BY, B/ % e >0, &7

[f(x1,y) — F(x2, )| < Caely — yolIxa — x|,

W3t FAE R, =1,..., nhovx € B, A5 e Mb(BY).

BRI T AR R — 2



S48 A A2 % 69 Moeery, LP, Sobolevf&it

o H A4 T A2 fE B9 Moeery, LP, SobolevA®

BHh%p=qit, ME(B) = LP(B), P AMAER 322, Lp = qif &
V5T VASF 3] LP %2 [A] A= Sobolev s 18] £ &9 4o T 481422,

K B* 1= Br(x) RR" P HE—K, B := By(yo) RR™ £ —3%,
1< p<oo. HAERBE i;*ifﬂé?‘xi]‘ﬂﬂ’]‘f" F AR M B x BY
& Lu(xy) = (F(y) ¥ 1) (x).

(i) %2254 Fvx € BX, f(x,-) € LP (BY), M3 FAE &8 % £ 45

#R|B| < 1A=Vx € BX, DS u(x,-) € LP(BY).

SRR T AR RN — 2



o 75 A2 fi§ 69 Moeery, LP, Sobolevf# it

o H A4 T A2 fE B9 Moeery, LP, SobolevA®

(i) Z=RBHEA (x, y)ith

(a) f(x,y)k TxERB LA K LB HOIder% %2,
(b) *FVx € BX, f(x,-) € LP(BY);

(c) ¥ TVx € BAny € BY, B % e >0, &7

[f(x1,y) — F(x2,¥)| < Caely — yolIxa — x|,

W3 FAEEIj=1,..., nfeVx € B, ﬁ@agg € LP(BY).

BRI T AR RN — 2



fAn 75 A2 fi% 89 Moeery, LP, Sobolevf# it

o H A4 T A2 fE B9 Moeery, LP, SobolevA®

2

xB* = BR(Xo)faERn‘:F'fﬂ':"ﬁ'i, BY = Bk(yo)}a&Rm‘:F”f}_—‘i]z

1< p<oo. ELHRB EHHKFETxAF TARLEIHOIder %42, 12
FARZ B x BY L& Lu(x,y) = (f(-,y) * ) (x).

R 3t FVx € B, f(x,-) € LP(BY), #+ B3t FVx € B Ay € BY, H &
Fie>0, £/

|f(X17y) - f(X25Y)| < Ca,e|y 7y0|6|X1 *X2|aa

Wt FAE&EGj=1,...,nfVx € B, Au(x, ) € WP (BY)Fe
Qux) e Wie (BY).

0 7y A2 iR — 2o gt



712 1 49 BMO 5 3

BB KB T AL R BMOAE it

B = Br(xo) YR AL E R, M BEMBMO il 2 XL :
BMO (B) := {g € Lj,. (B) : llg|lamo(s)<oo},
1

|lgllamo(s) == SUP lg(x) — gB,(z)|dx.
B, ()ce |B(2)] B.(z) &)

#op

[4] John F, Nirenberg L. On functions of bounded mean oscillation. Communications on Pure and Applied

Mathematics., 14 (1961), 415-426.
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75 A2 A 69 BMO 4 71

ok X izé#ﬁﬁﬁiﬁ%é’]BMO%f]’

’BX = BR(Xo)%Rn‘:Pf:{:"‘I*, BY .= Bk(yo)ﬁ%Rm‘:"’g:"‘Lfﬁ
fRB* x BY L& TAR& %, FF Hu(x,y) = (f(,y) * ) (x).
(i) 4= 3 FVx € B, f(x,-) € BMO(BY), W3t FVx € BX,

u(x,-) € BMO (BY).

(i) 4= X3 TVx € BX, f(x,-) € BMO (BY), #t Bf(x,y) X FTx#EB*LH
R, M FEE=1,... nfevx € BX, A2 € BMO (BY).

B AR T AR R — 2



X 75 AL B9 BMO 16 1+

o TN RN ﬂi Z69BMO4E i+

(i) 4 R4 (x, y )i 2

(a) f(x,y) X TxERB LA R EE3HOIder % %2,
(b) 3 Fvx € B, f(x,-) € L= (BY);

(c) ¥ TVx € BAny € BY, B/ % e >0, &7

[f(x1,y) — F(x2, )| < Caely — yolIxa — x|,

W3t FAERWI, =1, mhovx € B, A5 € BMO (BY).

BRI T AR R — 2



% 49BMO 1% 3t

du((x,y),2) _ ov((x,¥),2)

= L = o((x).2) 1)
ou((x.y).2) , Iv((x.¥).2) _
R L (CRIIE N )

£ HKBY CR2, B CR", ((x,y),2z) € BY x BZ. € AA5 45
Tty 7 AZ AIKRFZAGEET LA ETREL, THTHARLE
FAL R R T b S 9 AL, 5 F & 3 6 — 2 9] R (do iR AR 7 2 A
W, 5 5 S AT T8 5 1) ) A %

BHRRAR T AR RN — 2t



n 77 A2 i A9 BMO A% 7t

BBY AR F 4 &2k, BEAR TR, s FVz € B?, Fvhouith 24
A EZFIEFTRTERE HAE(1)F(2), FH

¢(-, 2),%(- 2) € C2 (R?), ¢(-, 2) (-, 2) ¥ X £ BY £, W]

(i) 4= Radicf = 52 + Gk R 321, 2, 34w dfit], 200 A, JH L
HHF((x,y), 2)EBY L £ F(x,y) R A R BB HOIder % 449, W] L

R ER L AT HAZGRu((x,y),z) = (f(, 2) * ) (x, y) £ R A&

IL.,

B AR T AR R — 2



N AR BMOf 3T

(i) 4= Rdidg := G0 — LHR R, 2, Jfdfeit], 200MR % &
#, F &K g((x,y), 2)EBY EXT(x,y) 2 A LA
FRHOIder# 4269, W) LR € 32X R g Fl T H A2 69 /%

v((x.y),2) = (g(+,2) * ) (x, y) LRI #F A& .

BRI T AR R — 2




% 49BMO 1% 3t

T & A R AR, BATS = R4S HIE.

(i) &M B RK S S HAIETARATHR Z TAZHN N 5558504
ANTAL, FIIEu((x,y),z) = (F(-,2) x T) (x, y ) F=

v((x,y),2) = (g(-,2) ) (x,y) &SR iam T A2 69 fif.

3t FV(x,y) € BYAaVz € B, A (1) XAL X TxKF,
F(2) XA X Ty K-F1F7

52 92 _ oY u=— -+ — . (3)
87)/%]+<9ng_<97y Ox  dy

d%u d%v o)
{W_axayzﬁf ~ A ¢ a?l):f

B3, # A1 2

BHRRAR T AR RN — 2t



S5 SCAR T A BMOE it

_ 9y 09 _

Av = i @ =g. (4)
| Tf((x,y), 2)F2g((x,y), z) EHBY LA R H FHFe By Holder &
4y, BHARIEF 2, &M%l u((x,y),2) = (f(,2) *T) (x, y)#=
v((x,¥),2) = (g(-;2) xT) (x,y) 2 H & (3)F=(4) 49 %

BHRRAR T AR RN — 2t



A2 i #9BMO & it

(i) #iEu((x,y), 2) = (F(, 2) * 1) (. y)Aev((x,y), 2) =
(g(2)* 1) (x, y) & (1) =(2) &9 fit

WX = (X y) ( 72) ¢( ) € C(_? (]1%2)‘}:f—'a‘¢(7Z)$‘Mp(72)):FL
EBY L, FTYA

du P . PP\
Ox /Rz ) <8X2 * 8X8y> (% —t)dt

o [ro(Zs- e o

XE A (-, z) € C (Rz)ﬁﬁAﬂb = ¢(5F[5, =#1]), N
Fr(5)d M AR, &A1 2]

[5] Evans L C. Partial Differential Equations. American Mathematical Society, 2022.
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du  ov 26 Ry R P
gu Y r v _ S
Ox Oy /R2 (t) <8x2 + Oxdy  Ox0Oy + 8y2> (% = t)dt

:/ r(t)quf)()N( — t)dt =Dz x[ = ¢,
R2

E AP = TR(1)M. FZAMNLTIAEE Y = g+ [R(2)#
.

BHRRAR T AR RN — 2t
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(i) B KM iEufevin L2321, 2, 3fdfit1, 2.

ARIE (i) A (i) A AN Sty = f*rﬁnv—g*rxt( ). (2 ) (3)# ( )89
fE. RGARIECILL, 2, 3Fedfitl, 2, KA Feil X ® IR L84
AER Fu=Ffx*TFov=gxTayHFINL.
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