

Normal numbers and measures

Junqiang Zhang

China University of Mining and Technology-Beijing

Workshop on Harmonic Analysis in Hangzhou, 2025

Definition (Borel, 1909)

Let $b \in \mathbb{N} \setminus \{1\}$. A real number $x = 0.a_1a_2\cdots = \sum_{k=1}^{\infty} a_k b^{-k} \in [0, 1]$ is normal to base b (or b -normal) if, and only if, $\forall k \in \mathbb{N}$ and any combination $D_k = (d_1, \dots, d_k)$ of k digits, $d_i \in \{0, 1, \dots, b-1\}$,

$$\lim_{N \rightarrow \infty} \frac{1}{N} \# \{0 \leq j \leq N-1 : (a_{j+1}, \dots, a_{j+k}) = (d_1, \dots, d_k)\} = \frac{1}{b^k}.$$

$$x = 0.2\mathbf{1134611377323113}\dots, D_3 = (1, 1, 3), b = 10.$$

- É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Math. Palermo 27 (1909), 247-271.

- 1) Rational numbers can not be normal to any base:

$$\frac{1}{7} = 0.142857\textcolor{red}{142857}\dots \quad (\text{10-ary expansion}),$$

where only the combination of $D_6 = (1, 4, 2, 8, 5, 7)$ occurs infinitely often.

- 2) It is not known whether or not π , e , $\sqrt{2}$, ... are normal to a fixed base.

► Y. Bugeaud, Distribution modulo one and Diophantine approximation, Cambridge Tracts in Mathematics, 193. Cambridge University Press, Cambridge, 2012.

Normal number

Theorem (Borel, 1909)

Lebesgue almost every $x \in [0, 1]$ is normal to every $b \geq 2$.

Theorem (Strong law of large numbers)

Assume that X_1, X_2, \dots are i.i.d. random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, which satisfy $E(X_i) = \mu$. Then it holds

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N X_n(\omega) = \mu, \quad \text{a.e. } \omega \in \Omega.$$

Proof of Borel's theorem

Let $\Omega := \{0, 1\}^{\mathbb{N}} = [0, 1]$ and \mathbb{P} be the uniform infinite product probability measure on Ω (Lebesgue measure on $[0, 1]$). For any $\omega = 0.\omega_1\omega_2\cdots \in \Omega$, let

$$X_n : \Omega \rightarrow \{0, 1\}, \quad X_n(\omega) = \omega_n.$$

Then X_n are i.i.d. (Bernoulli), $\mathbb{P}(X_n = 0) = 1/2$, $\mathbb{P}(X_n = 1) = 1/2$, and $E(X_n) = 1/2$.

Normal number

Normal numbers are everywhere, but it is difficult to find an explicit one.

- ▶ Champernowne [J. London Math. Soc., 1933]:

$$\xi_c := 0.1234567891011121314\cdots$$

is normal to base 10.

- ▶ Copeland and Erdős [Bull. Amer. Math. Soc., 1946]:

$$0.235711131719232931\cdots$$

is normal to base 10.

Definition (Bohl, Sierpiński, Weyl)

A sequence $(x_n)_{n \geq 1}$ of real numbers is *uniformly distributed modulo one* if, for any $0 \leq \alpha < \beta \leq 1$, the fractional part of x_n satisfies

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sharp \{1 \leq n \leq N : \{x_n\} \in [\alpha, \beta)\} = \beta - \alpha.$$

- ▶ P. Bohl, J. Reine Angew. Math., 135 (1909), 189-283.
- ▶ M.W. Sierpiński, Krakau Anz. A (1910), 9-11.
- ▶ H. Weyl, Rend. Circ. Mat. Palermo 30 (1910), 377-407.

Normality & uniform distribution

Theorem (Wall, 1949)

Let $b \in \mathbb{N}$ with $b \geq 2$. Then $x \in [0, 1]$ is normal to base b if, and only if, the sequence $(b^{n-1}x)_{n \geq 1}$ is uniformly distributed modulo one.

- D. D. Wall, Normal numbers. PhD thesis, University of California, Berkeley, CA, 1949.

Normality & uniform distribution

Theorem (Weyl, 1916)

The sequence $(x_n)_{n \geq 1}$ of real numbers is uniformly distributed modulo one, if and only if, for any $h \in \mathbb{Z} \setminus \{0\}$,

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N e^{-2\pi i h x_n} = 0 \quad (\text{Weyl's criterion}).$$

- ▶ H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins., Math. Ann. 77 (1916), 313-352.

Theorem (Davenport-Erdős-LeVeque, 1963)

Let μ be a finite Borel measure on $[0, 1]$, and $\{s_n(x)\}_{n \geq 1}$ be a sequence of bounded and integrable functions defined on $[0, 1]$. If, for any $h \in \mathbb{Z} \setminus \{0\}$,

$$\sum_{N=1}^{\infty} \frac{1}{N} \int_0^1 \left| \frac{1}{N} \sum_{n=0}^{N-1} e^{-2\pi i h s_n(x)} \right|^2 d\mu(x) < \infty,$$

then, $\{s_n(x)\}_{n \geq 1}$ is uniformly distributed modulo one for μ -a.e. $x \in [0, 1]$.

- ▶ H. Davenport, P. Erdős, & W. J. LeVeque, On Weyl's criterion for uniform distribution, Michigan Math. J. 10 (1963), 311-314.

DEL theorem

- ▶ For any integer $b \geq 2$ and $x \in [0, 1]$, take $s_n(x) = b^n x$. If, for any $h \in \mathbb{Z} \setminus \{0\}$,

$$\sum_{N=1}^{\infty} \frac{1}{N^3} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} |\widehat{\mu}(h(b^n - b^m))| < \infty,$$

then μ -a.e. $x \in [0, 1]$ is b normal, where

$$\widehat{\mu}(\xi) := \int_0^1 e^{-2\pi i \xi x} d\mu(x), \quad \xi \in \mathbb{R}.$$

- ▶ It is better to work with measures than with sets.

Partly normal numbers

- ▶ Do there exist real numbers which are normal to one base r , but not normal to another base s ?
- ▶ [Steinhaus, New Scottish Book]: whether normality to infinitely many bases implies normality to all bases?
- ▶ Cantor set:

$$C_{1/3} = \left\{ x \in [0, 1] : x = \sum_{j=1}^{\infty} \frac{\varepsilon_j}{3^j}, \quad \varepsilon_j \in \{0, 2\} \right\}.$$

Every $x \in C_{1/3}$ is not normal to base 3.

Partly normal numbers

- ▶ Integers $r, s \geq 2$ are **multiplicatively independent**, $r \not\sim s$, if $\log r / \log s \notin \mathbb{Q}$, i.e. there exists no $m, n \in \mathbb{N}$ s.t. $r^m = s^n$.

Theorem (Cassels, 1959; Schmidt, 1960)

Let μ be the Cantor measure on $C_{1/3}$. Then μ -a.e. $x \in C_{1/3}$ is normal to base $b \not\sim 3$.

- ▶ J. W. S. Cassels, On a problem of Steinhaus about normal numbers, *Colloq. Math.* 7 (1959), 95-101.
- ▶ W. M. Schmidt, On normal numbers, *Pacific J. Math.* 10 (1960), 661-672.

Partly normal numbers

- ▶ Cantor measure:

$$\mu = \mathop{*}_{k=1}^{\infty} \left[\frac{1}{2} \delta(0) + \frac{1}{2} \delta(2/3^k) \right].$$

$$\widehat{\mu}(\xi) = e^{-\pi i \xi} \prod_{j=1}^{\infty} \cos(2\pi 3^{-j} \xi), \quad \xi \in \mathbb{R}.$$

$$\sum_{N=1}^{\infty} \frac{1}{N^3} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} |\widehat{\mu}(h(b^n - b^m))| < \infty. \quad (\text{DEL theorem})$$

Proof overview

Lemma

There exists absolutely constants $C, \delta > 0$ such that, for any $2 \leq b \not\sim 3$ and any $N \in \mathbb{N}$,

$$\sum_{n=0}^{N-1} |\hat{\mu}(hb^n)| = \sum_{n=0}^{N-1} \prod_{j=1}^{\infty} |\cos(2\pi 3^{-j} hb^n)| < CN^{1-\delta}, \quad h \in \mathbb{Z} \setminus \{0\}.$$

DEL theorem:

$$\sum_{N=1}^{\infty} \frac{1}{N^2} \sum_{n=0}^{N-1} |\hat{\mu}(hb^n)| < \infty.$$

Lemma (Cassels & Schmidt)

Let $2 \leq r \not\sim 3$. For any $k \in \mathbb{N}$ and $n \in \{0, 1, \dots, 3^k - 1\}$, let

$$r^n = \lambda_0(n)3^0 + \lambda_1(n)3^1 + \dots + \lambda_i(n)3^i + \dots, \quad \lambda_i(n) \in \{0, 1, 2\},$$

be the 3-ary expansion of r^n . Then $(\lambda_l(n), \lambda_{l+1}(n), \dots, \lambda_{l+k-1}(n))$ take precisely once every one of the 3^k possible values of $\{0, 1, 2\}^k$, as n runs from 0 to $3^k - 1$, where $l \in \mathbb{N} \cup \{0\}$ is such that $r \equiv 1 \pmod{3^l}$ and $r \not\equiv 1 \pmod{3^{l+1}}$.

Normality & non-normality to restricted bases

- ▶ For $\mathcal{B}, \mathcal{B}' \subset \mathbb{N} \setminus \{1\}$, \mathcal{B} and \mathcal{B}' are called **compatible** if $\forall (b, b') \in \mathcal{B} \times \mathcal{B}'$, $b \approx b'$.
- ▶ For any compatible $\mathcal{B}, \mathcal{B}'$, define

$$\mathcal{N}(\mathcal{B}, \mathcal{B}') := \{x \in [0, 1] : x \text{ is normal to } \forall b \in \mathcal{B}, \text{ but not normal to } \forall b' \in \mathcal{B}'\}.$$

- ▶ For any compatible $\mathcal{B} \cup \mathcal{B}' = \mathbb{N} \setminus \{1\}$, Schmidt constructed a Cantor-like set $\mathcal{E} \subset \mathcal{N}(\mathcal{B}, \mathcal{B}')$. Pollington showed that

$$\dim_{\text{H}} \mathcal{E} = 1.$$

- ▶ A. D. Pollington, The Hausdorff dimension of a set of normal numbers, *Pacific J. Math.* 95 (1981), 193-204.
- ▶ W. M. Schmidt, Über die Normalität von Zahlen zu verschiedenen Basen, *Acta Arith.* 7 (1961/62), 299-309.

Theorem (Pramanik-Z.)

For every compatible pair $(\mathcal{B}, \mathcal{B}')$, $\mathcal{N}(\mathcal{B}, \mathcal{B}')$ can support a Rajchman probability measure μ .

- ▶ Rajchman measure: $\hat{\mu}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.

Set of uniqueness & multiplicity

Definition

A set $E \subset [0, 1]$ is called a *set of uniqueness*, denoted by $E \in \mathcal{U}$, if any trigonometric series of the form

$$\sum_{n \in \mathbb{Z}} c_n e^{2\pi i n x} = 0 \quad \forall x \in [0, 1] \setminus E \implies c_n \equiv 0.$$

Otherwise, it is called a *set of multiplicity*.

- Originated from 1869, Riemann, Heine, Cantor It is well known that

countable set $\subset \mathcal{U} \cap L$. measurable $\subset L$. null.

Set of uniqueness & multiplicity

Theorem (Piatetcki-Shapiro, 1952; Kahane & Salem, 1963)

Let $E \subset [0, 1]$ be a closed set. Then the following are equivalent:

- (i) \exists a Rajchman probability measure μ supported on E ;
- (ii) E is a set of multiplicity.

Kahane & Salem's question

Question (Kahane-Salem, 1964)

Can a set of non-normal numbers support a Rajchman measure?

(equivalently) Is any set of non-normal numbers a set of uniqueness?

- ▶ J. P. Kahane and R. Salem, Distribution modulo 1 and sets of uniqueness, Bull. Amer. Math. Soc. 70 (1964), 259-261.
- ▶ It was answered in affirmative by Lyons for the set of numbers which are not 2-normal.
- ▶ R. Lyons, The measure of nonnormal sets, Invent. Math. 83 (1986), 605-616.

Super normal number

Definition (Z. Rudnick, 2002)

A real number $x = \sum_{k=1}^{\infty} a_k 2^{-k} \in [0, 1]$ is called 2-super normal (or Poisson generic) if

$$\lim_{k \rightarrow \infty} \frac{1}{2^k} \# \left\{ \omega \in \{0, 1\}^k : \# \{1 \leq j \leq 2^k : (a_j, a_{j+1}, \dots, a_{j+k-1}) = \omega\} = i \right\} \\ =: \lim_{k \rightarrow \infty} Z_k(i; x) = \frac{e^{-1}}{i!}, \quad \forall i = 0, 1, 2, \dots$$

- Z. Rudnick & A. Zaharescu, The distribution of spacings between fractional parts of lacunary sequences, Forum Math. 14 (2002), 691-712.

Super normal number

- For $k = 3$, $2^k = 8$,

$$x = 0.10000100 \dots ,$$

- (1) For $i = 0$, $Z_3(0; x) = 4/8$ (011, 101, 110, 111);
- (2) For $i = 1$, $Z_3(1; x) = 2/8$ (001, 010);
- (3) For $i = 2$, $Z_3(2; x) = 2/8$ (100, 000);
- (4) For $i = 3$, $Z_3(1; x) = 0$.

Super normal number

Theorem (Peres-Weiss)

- (i) *Lebesgue almost every $x \in [0, 1]$ is 2-super normal.*
- (ii) *If $x \in [0, 1]$ is 2-super normal, then x is normal to 2.*
- (ii) *The Champernowne number $\xi_c := 0.11011100\cdots$ is not 2-super normal.*

► N. Alvarez, V. Becher & M. Mereb, Poisson generic sequences, Int. Math. Res. Not., (2023), 20970–20987.

Open problem

Question (Y. Perez & B. Weiss)

Let $C_{1/3}$ be the classical Cantor set and μ the Cantor-Lebesgue measure.
Whether μ -a.e. $x \in C_{1/3}$ is super normal?

Thank you!