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1. Affine Sobolev Inequalities
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Embedding theorem for Sobolev spaces

∙ 1 ≤ p < n (Sobolev inequality):

‖f‖
L

np
n−p

≤ Cn,p‖∇f‖Lp . (S)

∙ p = n (Moser–Trudinger inequality):

sup
f∈W 1,n,f ̸=0

∫︁
Rn

Φn

(︃
n𝜔

1
n−1
n

[︂
|f (x)|

‖f‖Ln + ‖∇f‖Ln

]︂n′)︃
dx < ∞, (MT)

where Φn(t) := et −
∑︀n−1

k=0
tk

k! .

∙ n < p < ∞ (Morrey inequality):

‖f‖L∞ ≤ n− 1
p 𝜔

− 1
n

n

(︂
p − 1
p − n

)︂1− 1
p

| supp f |
1
n−

1
p ‖∇f‖Lp . (M)
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Embedding theorem for Sobolev spaces

∙ They are only SO(n) invariant: For any f ∈ W 1,p and 𝜑 ∈ SO(n),

‖∇(f ∘ 𝜑)‖Lp = ‖∇f‖Lp .

∙ Indeed, for any linear operator 𝜑 on Rn, ∇(f ∘ 𝜑) = 𝜑 · (∇f ∘ 𝜑).

Hence,

|∇(f ∘ 𝜑)| = |∇f ∘ 𝜑|

only if 𝜑 ∈ SO(n) (that is, orthogonal matrix with det𝜑=1).
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Affine Sobolev inequality

Lutwak–Yang–Zhang’s improvement:

‖f‖
L

np
n−p

≤ Sn,p
⃒⃒
Π*

pf
⃒⃒− 1

n ≤ Cn,p‖∇f‖Lp . (LYZ)

∙ The volume of polar projection body:

⃒⃒
Π*

pf
⃒⃒

:=
1
n

∫︁
Sn−1

[︂∫︁
Rn

|∇𝜉f (x)|p dx
]︂− n

p

d𝜎(𝜉).

∙ E. Lutwak, D. Yang and G. Zhang, J. Differential Geom. 62 (2002), 17–38.
∙ G. Zhang, J. Differential Geom. 53 (1999), 183–202.
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Affine Sobolev inequality

∙ (LYZ) is SL(n) invariant (affine).

∙ For any linear operator 𝜑 on Rn and any 𝜉 ∈ Sn−1,

∇𝜉(f ∘ 𝜑) = ∇(f ∘ 𝜑) · 𝜉 = ⟨𝜑 · (∇f ∘ 𝜑), 𝜉⟩ = ⟨∇f ∘ 𝜑, 𝜑* · 𝜉⟩ .

Therefore, by change of variables twice, we obtain, for any

𝜑 ∈ SL(n) (that is, det𝜑 = 1),

⃒⃒
Π*

p(f ∘ 𝜑)
⃒⃒

=
1
n

∫︁
Sn−1

[︂∫︁
Rn

|⟨∇f (𝜑(x)), 𝜑* · 𝜉⟩|p dx
]︂− n

p

d𝜎(𝜉)

=
1
n

∫︁
Sn−1

[︂∫︁
Rn

|∇𝜉f (x)|p dx
]︂− n

p

d𝜎(𝜉) =
⃒⃒
Π*

pf
⃒⃒
.

(YINQIN LI BNU) 7 / 47



Proof of |Π*
pf |− 1

n . ‖∇f‖Lp

Indeed, applying Hölder’s inequality with ( n
n+p )−1 + (−n

p )−1 = 1,

we obtain∫︁
Sn−1

‖∇𝜉f‖p
Lp d𝜎(𝜉) ≥

[︂∫︁
Sn−1

d𝜎(𝜉)

]︂ n+p
n
[︂∫︁

Sn−1
‖∇𝜉f‖−n

Lp d𝜎(𝜉)

]︂− p
n

= n𝜔
1+ p

n
n

⃒⃒
Π*

pf
⃒⃒− p

n .

In addition, observe that∫︁
Sn−1

‖∇𝜉f‖p
Lp d𝜎(𝜉) =

∫︁
Rn

∫︁
Sn−1

|∇f (x) · 𝜉|p d𝜎(𝜉) dx = 𝛼n,p‖∇f‖p
Lp ,

where 𝛼n,p :=
∫︀
Sn−1 |e · 𝜉|p d𝜎(𝜉) is a constant for any e ∈ Sn−1. Hence

|Π*
pf |−

p
n ≤ 𝛼

1
p
n,p(n𝜔

1+ p
n

n )
− 1

p ‖∇f‖Lp .
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Polar projection body: functional aspect

∙ For any p ∈ [1,∞), f ∈ W 1,p, and 𝜉 ∈ Rn, let

‖𝜉‖Π*
p f :=

[︂∫︁
Rn

|∇f (x) · 𝜉|p dx
]︂ 1

p

.

The Polar projection body Π*
pf is defined to be the unit ball of

‖ · ‖Π*
p f .

∙ By the polar coordinate formula,⃒⃒
Π*

pf
⃒⃒

=

∫︁
‖x‖Π*p f≤1

dx =

∫︁
Sn−1

∫︁
r‖𝜉‖Π*

p f≤1
rn−1 dr d𝜎(𝜉)

=
1
n

∫︁
Sn−1

‖𝜉‖−n
Π*

p f d𝜎(𝜉).
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Polar projection body: geometric aspect

Let p ∈ [1,∞) and K be a convex body. Then

K =⇒ ΠpK (projection body) =⇒ Π*
pK (polar projection body).

Lutwak–Yang–Zhang:

∙ If p = 1 and f := 1K ,

Π*
1f = Π*

1K ;

∙ If p > 1 and f := (1 + ‖x‖
p

p−1
K )

1− n
p (where ‖ · ‖K is the Minkowski

functional of K ),

Π*
pf = ̃︀cn,pΠ*

pK .
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Petty projection inequality

Let p ∈ [1,∞). Then, for any convex body K in Rn,

|K |
n−p

n
⃒⃒
Π*

pK
⃒⃒ p

n ≤
𝜔n𝜔p−1

𝜔n+p−2
. (P)

Lutwak–Yang–Zhang: If 1 ≤ p < n,

(P) (Petty projection inequality) ⇐⇒ (LYZ) (Lp affine Sobolev inequality).

A well-known result:

Isoperimetric inequality ⇐⇒ L1 Sobolev inequality.

Petty projection inequality is also called affine isoperimetric inequality.
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Applications

Applying affine isoperimetric inequality, Lutwak, Yang and Zhang

in [Ann. Probab. 32 (2004), 757–774] showed:

Let p ∈ [1,∞) and 𝜆 ∈ ( n
n+p ,∞). If X and Y are independent random

vectors in Rn with finite p-th moments, then

E (|X · Y |p) ≥ c0[N𝜆(X )N𝜆(Y )]p/n,

where c0 is the best possible constant and N𝜆 is the 𝜆-Rényi entropy of

X.

More applications: Lutwak, Lv, Yang and Zhang [IEEE Trans.

Inform. Theory 58 (2012), 1319–1327] and [IEEE Trans. Inform.

Theory 59 (2013), 5592–5599].
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Functional & geometric inequalities

∙ Brunn–Minkowski inequality: For any convex bodies K and L,

|K + L|
1
n ≥ |K |

1
n + |L|

1
n . (BM)

∙ Minkowski inequality: For any compact E and any convex body K ,

V1(E ,K ) :=
1
n

lim inf
𝜀→0+

|E + 𝜀K | − |E |
𝜀

≥ |E |
1
n′ |K |

1
n . (Mix)

∙ (BM)=⇒(Mix)=⇒ isoperimetric inequality. For the second

implication: if let E := B(0,1), then V1(E ,K ) = 1
n |𝜕E |.

∙ A. Figalli, Quantitative stability results for the Brunn–Minkowski inequality, in: Proceedings

of the International Congress of Mathematicians-Seoul 2014, Vol. III, 237–256, Kyung

Moon Sa, Seoul, 2014.
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Affine Moser–Trudinger–Morry inequalities

For any p ∈ [1,∞), if let cn,p := (
n𝜔n𝜔p−1
2𝜔n+p−2

)
1
p 𝜔

1
n
n , then

∙ p = n:

sup
f∈W 1,n,f ̸=0

∫︁
Rn

Φn

⎛⎝n𝜔
1

n−1
n

[︃
|f (x)|

‖f‖Ln + cn,n|Π*
nf |−

1
n

]︃n′⎞⎠ dx < ∞;

∙ n < p < ∞:

‖f‖L∞ ≤ n− 1
p 𝜔

− 1
n

n

(︂
p − 1
p − n

)︂1− 1
p

cn,p| supp f |
1
n−

1
p
⃒⃒
Π*

pf
⃒⃒− 1

n .

∙ Stronger than the classical ones (MT) and (M).

∙ A. Cianchi, E. Lutwak, D. Yang and G. Zhang, Calc. Var. Partial Differential Equations 36

(2009), 419–436.
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Tool: Symmetrization inequality

∙ Let E ⊂ Rn be a Borel set of finite volume. The Schwarz

symmetral E⋆ of E is defined to be the closed ball centered at 0

satisfying |E⋆| = |E |.

∙ Let f : Rn → [0,∞) be a measurable function. The Schwarz

symmetral f ⋆ of f is defined by setting, for any x ∈ Rn,

f ⋆(x) := f *(𝜔n|x |n),

where f * is the nonincreasing rearrangement of f .

∙ If let f := 1E , then f ⋆ = 1E⋆ .
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Tool: Symmetrization inequality

∙ If let 𝜇f (t) := |{x ∈ Rn : |f (x)| > t}|, then

𝜇f = 𝜇f* = 𝜇f⋆

and hence, for any p ∈ [1,∞],

‖f‖Lp = ‖f ⋆‖Lp .

∙ Pólya–Szegö inequality:

‖∇f ⋆‖Lp ≤ ‖∇f‖Lp .

∙ Affine Pólya–Szegö inequality (LYZ02 for p ∈ [1,n) and CLYZ09

for p ∈ [1,∞)): ⃒⃒
Π*

pf ⋆
⃒⃒− 1

n ≤
⃒⃒
Π*

pf
⃒⃒− 1

n .
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Idea of proofs (1/3)

Assume f ∈ C∞
c . By the coarea formula and Hölder’s inequality

with ( 1
p )−1 + ( 1

1−p )−1 = 1, we obtain

‖∇f‖p
Lp =

∫︁ ∞

0

∫︁
|f (x)|=t

|∇f (x)|p−1 dℋn−1(x) dt

≥

[︃∫︁
|f (x)|=t

dℋn−1(x)

]︃p [︃∫︁
|f (x)|=t

1
|∇f (x)|

dℋn−1(x)

]︃1−p

.

From the isoperimetric inequality, it holds that, for any t ∈ (0,∞),∫︁
|f (x)|=t

dℋn−1(x) = |𝜕{x ∈ Rn : |f (x)| > t}| ≥ n𝜔
1
n
n |{x ∈ Rn : |f (x)| > t}|

= n𝜔
1
n
n 𝜇f (t).
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Idea of proofs (2/3)

In addition, the following well-know fact holds: For almost every

t ∈ (0,∞),

−𝜇′
f (t) ≥

∫︁
|f (x)|=t

1
|∇f (x)|

dℋn−1(t).

Hence, by the definition of f ⋆ and direct calculation,

‖∇f‖p
Lp ≥ np𝜔

p
n
n

∫︁ ∞

0

𝜇f (t)p− p
n

−𝜇′
f (t)p−1 dt = ‖∇f ⋆‖p

Lp .

This finishes the proof of the Pólya–Szegö inequality.
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Idea of proofs (3/3)

For the proof of affine Pólya–Szegö inequality: Using the almost

same idea and:

∙ isoperimetric inequality=⇒replaced byPetty projection inequality;

∙ But {x ∈ Rn : |f (x)| > t} may not be a convex body. To this end,

Cianchi, Lutwak, Yang and Zhang used the Brunn–Minkowski

theory to construct corresponding convex body.

∙ E. Lutwak, D. Yang and G. Zhang, Trans. Amer. Math. Soc. 356 (2004), 4359–4370.
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PS inequality=⇒affine Sobolev inequality

By direct calculation, for any f , ‖∇f ⋆‖Lp = cn,p|Π*
pf ⋆|−

1
n . Thus,

applying the classical Sobolev inequality and the affine Pólya–Szegö

inequality, we obtain

‖f‖
L

np
n−p

= ‖f ⋆‖
L

np
n−p

≤ Cn,p ‖∇f ⋆‖Lp

= Cn,pcn,p
⃒⃒
Π*

pf ⋆
⃒⃒− 1

n ≤ Cn,pcn,p
⃒⃒
Π*

pf
⃒⃒− 1

n .
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2. Affine Fractional Sobolev Inequalities
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Fractional Sobolev inequality

Let p ∈ [1,∞) and s ∈ (0,1).

∙ Fractional Sobolev seminorm:

[f ]W s,p :=

[︂∫︁
Rn

∫︁
Rn

|f (x) − f (y)|p

|x − y |n+sp dx dy
]︂ 1

p

.

∙ If s ∈ (0,1) and p ∈ [1, n
s ), then

‖f‖p

L
np

n−sp
≤ ̃︀Cn,p

s(1 − s)

(n − sp)p−1 [f ]pW s,p .

(YINQIN LI BNU) 22 / 47



Fractional polar projection body

∙ For any f ∈ W s,p and 𝜉 ∈ Rn, the fractional Lp polar projection

body Π*,s
p f is defined to be the unit ball in terms of

‖𝜉‖Π*,s
p f :=

[︂∫︁ ∞

0
t−sp

∫︁
Rn

|f (x + t𝜉) − f (x)|p dx
dt
t

]︂ 1
sp

.

∙ J. Haddad and M. Ludwig, Math. Ann. 388 (2024), 1091–1115.
∙ J. Haddad and M. Ludwig, J. Differential Geom. 129 (2025), 695–724.
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Fractional polar projection body

∙ SL(n) invariance: For any 𝜑 ∈ SL(n),

Π*,s
p (f ∘ 𝜑) = 𝜑−1Π*,s

p f .

∙ The polar coordinate implies⃒⃒
Π*,s

p f
⃒⃒

=
1
n

∫︁
Sn−1

‖𝜉‖−n
Π*,s

p f d𝜎(𝜉).

Hölder’s inequality gives |Π*,s
p f |−

s
n . [f ]W s,p .
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Fractional polar projection body

∙ Recall that the famous Bourgain–Brezis–Mironescu (BBM)

formula: For any f ∈ W 1,p,

lim
s→1−

p(1 − s)[f ]pW s,p = 𝛼n,p‖∇f‖p
Lp .

∙ Haddad and Ludwig proved the affine BBM formula:

lim
s→1−

p(1 − s)
⃒⃒
Π*,s

p f
⃒⃒− sp

n =
⃒⃒
Π*

pf
⃒⃒− p

n .

∙ J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in: Optimal

Control and Partial Differential Equations, IOS, Amsterdam, 2001, pp. 439–455.
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Affine fractional Sobolev inequality

Haddad and Ludwig proved that, for any s ∈ (0,1) and p ∈ [1, n
s ),

‖f‖p

L
np

n−sp
≤ ̃︀Cn,p

s(1 − s)

(n − sp)p−1 n𝜔
n+sp

n
n

⃒⃒
Π*,s

p f
⃒⃒− sp

n .

∙ SL(n) invariance.

In the sense of possibly non-optimal constant:

∙ Since |Π*,s
p f |−

s
n . [f ]W s,p , it is stronger than the fractional Sobolev

inequality;

∙ Letting s → 1−, it goes back to (LYZ).
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Idea of proofs: fractional PS inequality

For any convex body K , define

[f ]W s,p
K

:=

[︃∫︁
Rn

∫︁
Rn

|f (x) − f (y)|p

‖x − y‖n+sp
K

dx dy

]︃ 1
p

,

where ‖ · ‖K is the Minkowski functional of K . Then the following

Pólya–Szegö inequality holds:

[f ⋆]W s,p
K⋆

≤ [f ]W s,p
K

. (PS)

Idea: Writing ‖x − y‖−n−sp
K =

∫︀∞
0 1

t−
1

n+sp K
(x − y) dt and using the

Riesz rearrangement inequality:∫︁
Rn

∫︁
Rn

f (x)g(y)k(x − y) dx dy ≤
∫︁
Rn

∫︁
Rn

f ⋆(x)g⋆(y)k⋆(x − y) dx dy .
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Fractional PS=⇒affine fractional PS (1/2)

(PS) implies the following:⃒⃒
Π*,s

p f ⋆
⃒⃒− sp

n ≤
⃒⃒
Π*,s

p f
⃒⃒− sp

n .

Indeed, by the polar coordinate formula, we find that

[f ]p
W s,p

K
=

∫︁ ∞

0

∫︁
Sn−1

t−sp‖𝜉‖−n−sp
K =

∫︁
Sn−1

‖𝜉‖−n−sp
K ‖𝜉‖sp

Π*,s
p f

d𝜉.

Hence, from (PS), we infer that∫︁
Sn−1

‖𝜉‖−n−sp
K⋆ ‖𝜉‖sp

Π*,s
p f⋆

d𝜉 ≤
∫︁
Sn−1

‖𝜉‖−n−sp
K ‖𝜉‖sp

Π*,s
p f

d𝜉.
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Fractional PS=⇒affine fractional PS (2/2)

Applying Hölder’s inequality with ( n
n+sp )−1 + (− n

sp )−1 = 1, we

obtain

1
n

∫︁
Sn−1

‖𝜉‖−n−sp
K⋆ ‖𝜉‖sp

Π*,s
p f⋆

d𝜉

≥
(︂

1
n

∫︁
Sn−1

‖𝜉‖−n
K⋆

)︂1+ sp
n
(︂

1
n

∫︁
Sn−1

‖𝜉‖−n
Π*,s

p f⋆
d𝜉
)︂− sp

n

= |K ⋆|1+
sp
n |Π*,s

p f ⋆|−
sp
n = |K |1+

sp
n |Π*,s

p f ⋆|−
sp
n .

Letting K := Π*,s
p f , we further have

|Π*,s
p f |1+

sp
n |Π*,s

p f ⋆|−
sp
n ≤ 1

n

∫︁
Sn−1

‖𝜉‖−n
Π*,s

p f
d𝜉 = |Π*,s

p f |.
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PS inequality=⇒affine Sobolev inequality

Similar to the first-order case: By direct calculation, for any f ,

[f ⋆]W s,p ∼ |Π*,s
p f ⋆|−

s
n . Thus, applying the classical fractional Sobolev

inequality and the affine Pólya–Szegö inequality, we obtain

‖f‖
L

np
n−sp

= ‖f ⋆‖
L

np
n−sp

. [f ⋆]W s,p

∼
⃒⃒
Π*,s

p f ⋆
⃒⃒− s

n ≤
⃒⃒
Π*,s

p f
⃒⃒− s

n .
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3. Affine Fractional
Moser–Trudinger–Morrey Inequalities
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Fractional Morrey inequality

∙ Let s ∈ (0,1) and p ∈ (n
s ,∞). Then, for any f ∈ W s,p with

| supp f | < ∞,

‖f‖L∞ . [s(1 − s)]
1
p | supp f |

s
n−

1
p [f ]W s,p , (1)

where the implicit positive constant is independent of s.

∙ Letting s → 1− and applying the BBM formula, (1) goes back to

(M) (in the sense of possibly non-optimal constant).
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By the fractional Pólya–Szegö inequality, it is easy to establish the

corresponding affine Morrey inequality:

(Domínguez–L.–Tikhonov–Yang–Yuan 2025)
Let s ∈ (0,1) and p ∈ (n

s ,∞).

(i) For any f ∈ W s,p with | supp f | < ∞,

‖f‖L∞ . [s(1 − s)]
1
p | supp f |

s
n−

1
p
⃒⃒
Π*,s

p f
⃒⃒− s

n . (2)

(ii) For any p ∈ (n,∞) and f ∈ W 1,p with | supp f | < ∞,

| supp f |
s
n−

1
p
⃒⃒
Π*,s

p f
⃒⃒− s

n ≤
b1−s

n,p

[ps(1 − s)]
1
p

| supp f |
1
n−

1
p
⃒⃒
Π*

pf
⃒⃒− 1

n .
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Affine Morrey inequality

In the sense of possibly non-optimal constant:

∙ |Π*,s
p f |−

s
n . [f ]W s,p implies that (2) is stronger than the fractional

Morrey inequality (1);

∙ (ii) implies that (2) is stronger than the affine Morrey inequality of

CLYZ;

∙ Combining (2) and the affine BBM formula, we go back to the

affine Morrey inequality of CLYZ.
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Fractional Moser–Trudinger Inequality

∙ For any p ∈ [1,∞) and any measurable f , let

𝜔(f , t)p := ( 1
tn𝜔n

∫︀
|h|<t ‖∆hf‖p

Lp dh)
1
p . Moreover, if q ∈ [1,∞] and

s ∈ (0,1), then let

[f ]Bs
p,q

:=

{︂∫︁ ∞

0
t−sq𝜔(f , t)q

p
dt
t

}︂ 1
q

< ∞.

∙ If q ∈ [1,∞) and p ∈ (n,∞), then there exists 𝛼p,q,n ∈ (0,∞),

depending only on p, q, and n, such that

sup
f∈B

n
p
p,q ,f ̸=0

∫︁
Rn

Φp,q

⎛⎜⎝𝛼p,q,n

⎡⎣ |f (x)|
‖f‖Lp + [f ]

B
n
p
p,q

⎤⎦q′⎞⎟⎠ dx < ∞, (3)

where Φp,q(t) := et −
∑︀⌈p/q′⌉−1

k=0
tk

k! .
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Fractional Moser–Trudinger Inequality

∙ The asymptotic behavior of 𝛼p,q,n in (3) is still unknown.

∙ If we want to establish an affine variant of (3) which is pointwise

stronger than the result of CLYZ, we need to retain q′ := n′, hence

q = n =⇒ B
n
p
p,n.
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Besov polar projection body

Let p,q ∈ [1,∞) and s ∈ (0,1).

∙ For any f ∈ Bs
p,q and 𝜉 ∈ Rn, the Besov polar projection body Π*,s

p,qf

is defined to be the unit ball in terms of

‖𝜉‖Π*,s
p,q f :=

[︃∫︁ ∞

0
t−sq

[︂∫︁
Rn

|f (x + t𝜉) − f (x)|p dx
]︂ q

p dt
t

]︃ 1
sq

.

∙ O. Domínguez, Oscar, Y. Li, S. Tikhonov, D. Yang and W. Yuan, Math. Ann. 392 (2025),

3319–3366.
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Besov polar projection body

∙ If p = q, then Π*,s
p,pf = Π*,s

p f .

∙ SL(n) invariance: For any 𝜑 ∈ SL(n),

Π*,s
p,q (f ∘ 𝜑) = 𝜑−1Π*,s

p,qf .

∙ |Π*,s
p,qf |−

s
n . [f ]Bs

p,q
.
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MT Inequality with optimal asymptotic factor

(Domínguez–L.–Tikhonov–Yang–Yuan 2025)
Let n ≥ 2. Then there exists an absolute constant c ∈ (0,∞) such that,

for any 𝛼 ∈ (0, 1
n′cn′e

),

sup
p∈(n,∞)

sup
f∈B

n
p
p,n,f ̸=0

∫︁
Rn

Φp,n

⎛⎜⎜⎜⎝𝛼

⎧⎪⎪⎨⎪⎪⎩
|f (x)|

‖f‖Lp + Λn,p(1 − n
p )

1
p [f ]

B
n
p
p,n

⎫⎪⎪⎬⎪⎪⎭
n′⎞⎟⎟⎟⎠ dx < ∞,

where Λn,p depends only on n and p.
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Main tools

This result is equivalent to the following embedding of Besov

spaces: If n ≥ 2, then there exists an absolute constant c ∈ (0,∞)

such that, for any p ∈ (n,∞),q ∈ [p,∞), and f ∈ B
n
p
p,n,

‖f‖Lq ≤ cq
1
n′

{︃
‖f‖Lp + Λn,p

(︂
1 − n

p

)︂ 1
p

[f ]
B

n
p
p,n

}︃
. (4)

∙ Using K -functionals and Littlewood–Paley characterizations to

obtain the asymptotic factor.

∙ This asymptotic factor is optimal because we also obtain the

following BBM type formula: If f ∈ C2
c , then

lim
p→n+

(︂
1 − n

p

)︂ 1
n

[f ]
B

n
p
p,n

=
𝛾n

n
1
n

‖∇f‖Ln .
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Relations with classical MT inequality

BBM type formula gives the following: For any f ∈ C2
c ,

lim
p→n+

∫︁
Rn

Φp,n

⎛⎜⎜⎜⎝𝛼

⎧⎪⎪⎨⎪⎪⎩
|f (x)|

‖f‖Lp + Λ(n,p)(1 − n
p )

1
p [f ]

B
n
p
p,n

⎫⎪⎪⎬⎪⎪⎭
n′⎞⎟⎟⎟⎠ dx

=

∫︁
Rn

Φn

⎛⎝𝛼

{︃
|f (x)|

‖f‖Ln + 𝜃n𝛾nn− 1
n ‖∇f‖Ln

}︃n′⎞⎠ dx .

This means that, in the sense of possibly non-optimal constant, our MT

inequality goes back to the classical one.
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Relations with classical MT inequality

Moreover, the following holds:

(Domínguez–L.–Tikhonov–Yang–Yuan 2025)
Let n ≥ 2. Then there exist positive constants pn ∈ (n,∞) and

Cn ∈ (0,∞), depending only on n, such that, for any p ∈ (n,pn) and

f ∈ Ẇ 1,n,

[f ]
B

n
p
p,n

≤Cn

(︂
1 − n

p

)︂− 1
n

‖∇f‖Ln .

Thus, in the sense of possibly non-optimal constant, our MT

inequality is stronger than the classical one.
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Affine fractional MT Inequality

(Domínguez–L.–Tikhonov–Yang–Yuan 2025)
Let n ≥ 2. Then there exists an absolute constant c ∈ (0,∞) such that,

for any 𝛼 ∈ (0, 1
n′cn′e

),

sup
p∈(n,∞)

sup
f∈B

n
p
p,n

f ̸=0

∫︁
Rn

Φp,n

⎛⎜⎝𝛼

⎡⎣ |f (x)|

‖f‖Lp + Ξn,p(1 − n
p )

1
p |Π

*, n
p

p,n f |−
1
p

⎤⎦n′⎞⎟⎠ dx < ∞.
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Main tools

∙ Pólya–Szegö inequality for Besov polar projection bodies:⃒⃒
Π*,s

p,qf ⋆
⃒⃒− s

n .
⃒⃒
Π*,s

p,qf
⃒⃒− s

n .

∙ This, together with (4), further implies

‖f‖Lq ≤ cq
1
n′

{︃
‖f‖Lp + Ξn,p

(︂
1 − n

p

)︂ 1
p
⃒⃒⃒⃒
Π
*, n

p
p,n f

⃒⃒⃒⃒− 1
p
}︃
.
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Relations with affine MT inequality

BBM type formula also holds for polar projection bodies: If f ∈ C2
c ,

then

lim
p→n+

(︂
1 − n

p

)︂ 1
n
⃒⃒⃒⃒
Π
*, n

p
p,n f

⃒⃒⃒⃒− 1
p

= n− 1
n |Π*

nf |−
1
n .

Hence, for any f ∈ C2
c ,

lim
p→n+

∫︁
Rn

Φp,n

⎛⎜⎝𝛼

⎡⎣ |f (x)|

‖f‖Lp + Ξn,p(1 − n
p )

1
p |Π

*, n
p

p,n f |−
1
p

⎤⎦n′⎞⎟⎠ dx

=

∫︁
Rn

Φn

⎛⎝𝛼

[︃
|f (x)|

‖f‖Ln + 𝜃n(𝜔n
2n )

1
n |Π*

nf |−
1
n

]︃n′⎞⎠ dx . (5)

Therefore, in the sense of possibly non-optimal constant, our affine MT

inequality can go back to the classical one.
(YINQIN LI BNU) 45 / 47



Relations with affine MT inequality

If f ∈ W 1,n, then there exist two positive constants pn ∈ (n,∞)

and Cn ∈ (0,∞), depending only on n, such that, for any p ∈ (n,pn),(︂
1 − n

p

)︂ 1
n
⃒⃒⃒⃒
Π
*, n

p
p,n f

⃒⃒⃒⃒− 1
p

≤Cn2(2n)
1
n Γ

(︂
1 +

1
n

)︂
𝜔
− 1

p
n |Π*

nf |−
1
n .

This also means that, in the sense of possibly non-optimal constant,

our affine MT inequality is stronger than the classical one.
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Thank you!
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