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1. Affine Sobolev Inequalities
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Embedding theorem for Sobolev spaces

e 1 < p < n(Sobolev inequality):
71, 2, < Capl Ve (S)

e p = n (Moser—Trudinger inequality):

sup o, [ mor { ()] ]n/ dx < (MT)
w _— 0,
rewinrzodrn T\ LIl Ve

where ¢,(t) := ¢! — 720 £

e N < p < oo (Morrey inequality):

1 -1 /p-1 =5 11
e < nben® (5=5) " lswop 519l o
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Embedding theorem for Sobolev spaces

e They are only SO(n) invariant: For any f € WP and ¢ € SO(n),
IV(fod)le =V

e Indeed, for any linear operator ¢ on R", V(fo ¢) = ¢ - (Vfo ¢).
Hence,

V(fod)|=I[VFiog

only if ¢ € SO(n) (that is, orthogonal matrix with det ¢=1).
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Affine Sobolev inequality

Lutwak—Yang—Zhang’s improvement:

1
I£ll, 2, < SnplMpf| "7 < Copl|VHlo. (LYZ)

e The volume of polar projection body:

=1 [ ][ wefoor o] P o)

e E. Lutwak, D. Yang and G. Zhang, J. Differential Geom. 62 (2002), 17-38.
e G. Zhang, J. Differential Geom. 53 (1999), 183-202.
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Affine Sobolev inequality

e (LYZ) is SL(n) invariant (affine).

e For any linear operator ¢ on R” and any ¢ € S"1,

Ve(fog) =V(fod)-§= (¢ (VFcg),&) = (Vfog,¢" &),

Therefore, by change of variables twice, we obtain, for any
¢ € SL(n) (thatis, det¢ = 1),
1 b
mrea) =1 [ | [ 1otemne-ap o] dote
sn—1 RN
1 b
= / [ |Vef(x)[P dx] do(&) = \I‘I;‘,ﬂ.
sn—1 RN

n
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Proof of |M5f| =7 < || V]|

Indeed, applying Hélder’s inequality with (W”p)—1 + (_g)—1 =1,
we obtain
n+p

do(o)] "

_bk
n

P
n

[ vl aote) = |

sn—1 gn—1

|:/S,,_1 IVef|| ! dff(é“)}

1+2
= Nw, "

nyf

In addition, observe that
L 1vetit dote) = [ 19100 - €P dole) i = anpl VA

where anp = [o,1 |- €|P do(€) is a constant for any e € S"1. Hence

Mef=2 < a2 (nwh 7Y 3 |0 0
’ p| n _an,p(nwn ) H ”LP-
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Polar projection body: functional aspect

e Forany pe[1,00), f € W'P,and ¢ € R”, let

el = | [ 197007 o]

The Polar projection body [M5f is defined to be the unit ball of
I g

e By the polar coordinate formula,

s :/ dx:/ / 1 dr do(€)
Il <1 571 €<

1 _
=5 L lelggy doto).

n
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Polar projection body: geometric aspect

Let p € [1,00) and K be a convex body. Then
K = MNpK (projection body) = MN;K (polar projection body).
Lutwak—Yang—Zhang:
e lfp=1andf:=1,
nif=MiK;
P 4_n

e lfp>1andf:=(1+|x|’ )~k (where || - || is the Minkowski

functional of K),
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Petty projection inequality

Let p € [1,00). Then, for any convex body K in R”,

hg 2Pl (P)

n—p
|K| ™ ‘I'I’;JK
Wntp-2

Lutwak—-Yang—Zhang: If 1 < p < n,
(P) (Petty projection inequality) += (LYZ) (LP affine Sobolev inequality).
A well-known result:

Isoperimetric inequality <= L' Sobolev inequality.

Petty projection inequality is also called affine isoperimetric inequality.
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Applications

Applying affine isoperimetric inequality, Lutwak, Yang and Zhang
in [Ann. Probab. 32 (2004), 757—-774] showed:

Letpe[1,00)and X € (ﬁ,oo). If X and Y are independent random

vectors in R" with finite p-th moments, then
E(1X - YIP) = colNa(X)Na(V)IP/",

where ¢y is the best possible constant and N, is the A-Rényi entropy of
X.

v

More applications: Lutwak, Lv, Yang and Zhang [IEEE Trans.
Inform. Theory 58 (2012), 1319-1327] and [IEEE Trans. Inform.
Theory 59 (2013), 5592-5599].
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Functional & geometric inequalities

e Brunn—Minkowski inequality: For any convex bodies K and L,
K + L[5 > |K|» + |L|n. (BM)

e Minkowski inequality: For any compact E and any convex body K,

|E+5K| |E|

Vi(E, K) = I|m| f > |E|7 |K|5. (Mix)

n -0t

e (BM)=—(Mix)— isoperimetric inequality. For the second
implication: if let £ := B(0, 1), then V;(E, K) = 1|9E]|.

e A. Figalli, Quantitative stability results for the Brunn—Minkowski inequality, in: Proceedings
of the International Congress of Mathematicians-Seoul 2014, Vol. 1ll, 237-256, Kyung
Moon Sa, Seoul, 2014.
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Affine Moser—Trudinger—Morry inequalities

Forany p € [1,00), if let cpp := (%)mg, then

o p=n:
1 f n
— X
sup &, | nw) () 1] ax < oo;
few?'.n f0 JR" [ fl[Ln + Cnn[MRf[ 2
e N<p< oo

_1 1 /p—1 [ SO R
Ifl|Lc < N Pwn”(p_n Cn,p| supp f|7 P’I'Ipf| n,

Stronger than the classical ones (MT) and (M).

e A. Cianchi, E. Lutwak, D. Yang and G. Zhang, Calc. Var. Partial Differential Equations 36

(2009), 419-436.
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Tool: Symmetrization inequality

e Let E C R" be a Borel set of finite volume. The Schwarz
symmetral E* of E is defined to be the closed ball centered at 0
satisfying |E*| = |E]|.

e Let f:R" — [0, 00) be a measurable function. The Schwarz
symmetral f* of f is defined by setting, for any x € R”,

f(x) == 1*(wnlx|"),

where f* is the nonincreasing rearrangement of f.

o Iflet f:=1fg, then f* = 1.
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Tool: Symmetrization inequality

o Iflet us(t) := |{x € R": [f(x)| > t}], then
[of = ppe = fps
and hence, for any p € [1, ],
[lle =[] e
e Pélya—Szeg6 inequality:
IVl e < IVHI -

e Affine P6lya—Szegd inequality (LYZ02 for p € [1, n) and CLYZ09
for p € [1,00)):

M7 < e
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Idea of proofs (1/3)

Assume f € CZ°. By the coarea formula and Hélder’s inequality
with (1p)—1 + (1%,))—1 =1, we obtain

VAP, = /0 /f TP ) a
xX)|=

p 1-p
n—1 1 n—1
- [/f(xn:t o (X)] [/mxn:t w0 (X)] ‘

From the isoperimetric inequality, it holds that, for any t € (0, ),

/ IH™ (%) = [O{x € R" < [f(x)| > 1}] > nwg|{x € B": [£(x)| > )]
If(x)|=t

1

= nwg pe(t).
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Idea of proofs (2/3)

In addition, the following well-know fact holds: For almost every
t € (0,00),

/ 1 n—1
i) > /|f T T,

Hence, by the definition of f* and direct calculation,
P
2 [ pe(t)Ph
IVEIZ > n"’wn/0 SO dt = | V|7

This finishes the proof of the Polya—Szeg6 inequality. O
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Idea of proofs (3/3)

For the proof of affine Pélya—Szegd inequality: Using the almost
same idea and:
e isoperimetric inequality—="P'aced by Petty projection inequality;
e But {x € R": |f(x)| > t} may not be a convex body. To this end,
Cianchi, Lutwak, Yang and Zhang used the Brunn—Minkowski
theory to construct corresponding convex body.

e E. Lutwak, D. Yang and G. Zhang, Trans. Amer. Math. Soc. 356 (2004), 4359-4370.
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PS inequality=—-affine Sobolev inequality

By direct calculation, for any f, |[V£*|o = cnp|M3f*| 7. Thus,
applying the classical Sobolev inequality and the affine Pélya—Szegd
inequality, we obtain

I e, = IF1] g2, < CrpI9F I

_1
n

= CpCip || 77 < CopCinp | Mf
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2. Affine Fractional Sobolev Inequalities
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Fractional Sobolev inequality

Letpe[1,00)and s € (0,1).

e Fractional Sobolev seminorm:

1
. (%) — )P P
e = [, et

e lfse(0,1)and p e [1, %), then

s(1—9)
(n—sp)p-T

||f”pi < Cn,p [f]evs,p-
| n—sp
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Fractional polar projection body

e Forany f € WSP and ¢ € R, the fractional LP polar projection
body My*f is defined to be the unit ball in terms of

1
< dt] s
1€l sr = [/ ts’”/ fx+ 1) — ()P ax |
0 RN

e J. Haddad and M. Ludwig, Math. Ann. 388 (2024), 1091-1115.
e J. Haddad and M. Ludwig, J. Differential Geom. 129 (2025), 695-724.
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Fractional polar projection body

e SL(n) invariance: For any ¢ € SL(n),
My (fog) = ¢ 'Ny°f.
e The polar coordinate implies
mysr| =
Mt =, |, Ellgfe; do(©)

Holder's inequality gives [My°f| =7 < [flwse.
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Fractional polar projection body

e Recall that the famous Bourgain—Brezis—Mironescu (BBM)
formula: Forany f € WP,

Jim p(1 = 8)[fyer = anpl VAl

e Haddad and Ludwig proved the affine BBM formula:

_Sp _b
lim p(1—s)|Ny°f| " = || ".

s—1—

e J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in: Optimal

Control and Partial Differential Equations, 10S, Amsterdam, 2001, pp. 439—455.
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Affine fractional Sobolev inequality

Haddad and Ludwig proved that, for any s € (0,1) and p € [1, 2),

~ s(1—s nsp _sP
1?5, < Crorc ebyon” 551

n— sp)P~1

e SL(n) invariance.
In the sense of possibly non-optimal constant:
e Since \I‘I;‘,’Sf\—% < [flwse, it is stronger than the fractional Sobolev
inequality;

e Letting s — 17, it goes back to (LYZ).
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ldea of proofs: fractional PS inequality

For any convex body K, define
1
f(x) = f)IP ’
flyse := / —r > —dxdy| ,
| ]WKp [ R JRo || X — Y||n+3p Y
where || - ||k is the Minkowski functional of K. Then the following
Pélya—Szeg6 inequality holds:
[FTwer < [wse- (PS)

n—-sp __ _ .
Idea: Writing ||x — || = [y 1 - nJ:spK (x — y) dt and using the
Riesz rearrangement inequality:

L 10gmkte=yyaxdy < | | 00wk (x =y deay.

n Rn
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Fractional PS=-affine fractional PS (1/2)

(PS) implies the following:
mper ¥ < e

Indeed, by the polar coordinate formula, we find that

Moo= [ [ 0PI = [ 11 lel o

Hence, from (PS), we infer that

/ el el ey, o < / el )%, d.
Sn— S”*1 P
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Fractional PS=-affine fractional PS (2/2)

Applying Holder’s inequality with (n+sp

obtain

1 —N—8p,| ||SP
o NI o

n
sp

1 h +3 /1 -5
> (5 L) (5 et )

= K[ Mo = K R
Letting K := M °f, we further have

*, P q%,8 fx 1 *
M e % < L [ el o = Mo

’7 sn-
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PS inequality=—-affine Sobolev inequality

Similar to the first-order case: By direct calculation, for any f,
[FFlwse ~ |ﬂ;§’sf*|‘%. Thus, applying the classical fractional Sobolev
inequality and the affine Polya—Szegd inequality, we obtain

Il oy = 1F1 ooy < [ wse

_s
n

~ [M53F5 7 < NS
P p
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3. Affine Fractional
Moser-Trudinger—Morrey Inequalities
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Fractional Morrey inequality

e Letse (0,1)and p € (4,00). Then, for any f € WSP with
| supp f| < oo,

1 s_1
1l e < [8(1 = 8)]P [ supp f[7 7 [flws.p, (1)

where the implicit positive constant is independent of s.

e Letting s — 1— and applying the BBM formula, (1) goes back to
(M) (in the sense of possibly non-optimal constant).
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By the fractional Pélya—Szegd inequality, it is easy to establish the
corresponding affine Morrey inequality:

(Dominguez—L.—Tikhonov—Yang—Yuan 2025)

Lets € (0,1) and p € (2, c0).
(i) Forany f € WP with | supp f| < oo,

1 S_1. g8
1l < [S(1 = 8)]7 | supp f[7 7 [°F| . 2)

(ii) For any p € (n,o0) and f € WP with | supp f| < oo,

1—s
|suppf]'7 P‘I’I*Sf{ "<bn7|suppf\" P‘I’I f‘
[ps(1 — s)]?
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Affine Morrey inequality

In the sense of possibly non-optimal constant:

. ||‘|;;’Sf|—% < [flws» implies that (2) is stronger than the fractional
Morrey inequality (1);

e (ii) implies that (2) is stronger than the affine Morrey inequality of
CLYZ,

e Combining (2) and the affine BBM formula, we go back to the
affine Morrey inequality of CLYZ.
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Fractional Moser—Trudinger Inequality

e Forany p € [1,0) and any measurable f, let
(f Hp : (t"wn f|h|<t | Anf(|F dh) Moreover, if g € [1, o] and
€ (0,1), then let

1
[f]B[S,,q = {/0 t_sqw(f, t)gcit}q < 0.

e If g €[1,00) and p € (n, c0), then there exists ap g.n € (0, 00),
depending only on p, g, and n, such that

f()] e @)

d
SUp /n p,.q OZP,Q,” ||f||Lp + [f]Bg
(o)

n
feBp ,.f#0

1—1 +k
where ®p 4(t) := et — L":/(?W -
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Fractional Moser—Trudinger Inequality

e The asymptotic behavior of ap q,n in (3) is still unknown.

¢ If we want to establish an affine variant of (3) which is pointwise
stronger than the result of CLYZ, we need to retain ¢’ := r’, hence

n
g=h— B[,”n.
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Besov polar projection body

Let p,q € [1,00) and s € (0, 1).
e Forany f € Bf , and £ € R", the Besov polar projection body I'Iz‘,if,f
is defined to be the unit ball in terms of

- M
[€Nner = [/0 52| [ 1foces 1) - 100 o] f] .

e O. Dominguez, Oscar, Y. Li, S. Tikhonov, D. Yang and W. Yuan, Math. Ann. 392 (2025),

3319-3366.
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Besov polar projection body

o If p= g, then Myof = My°f.
e SL(n) invariance: For any ¢ € SL(n),

My5(fog)=¢ Myt

_Ss
o 5375 < gy,
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MT Inequality with optimal asymptotic factor

(Dominguez—L.—Tikhonov—Yang—Yuan 2025)
Let n > 2. Then there exists an absolute constant ¢ € (0, co) such that,

for any a € (0, —1-),

ax < oo,

sup sup /cbpn Q@ 70l

k) 1
pE(n,00) fGB,?,n,f;éO R | flle 4+ Anp(1 — g)p [f]Bpgn

where Ap , depends only on nand p.
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This result is equivalent to the following embedding of Besov
spaces: If n > 2, then there exists an absolute constant ¢ € (0,00)
such that, for any p € (n, ), q € [p,>), and f € B;,’,,,

Illa < cq {HfHLP +/\np< ) U } (4)

e Using K-functionals and Littlewood—Paley characterizations to
obtain the asymptotic factor.

e This asymptotic factor is optimal because we also obtain the
following BBM type formula: If f € C2, then

. n _ In
lim <1—p> [f]pg —EHVfHLn

p—n+
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Relations with classical MT inequality

BBM type formula gives the following: For any f € C?,

n/

lim / Ppn | @ (x)] ax
P e 1l + Agnpy(1 = 22111

n
BP
p

nl
By ST
R” [llr + Onynn™ o [V o

This means that, in the sense of possibly non-optimal constant, our MT

inequality goes back to the classical one.

(YINQIN LI BNU) 41/47



Relations with classical MT inequality

Moreover, the following holds:

(Dominguez—-L.—Tikhonov—Yang—Yuan 2025)

Let n > 2. Then there exist positive constants p, € (n, cc) and

Cn € (0, ), depending only on n, such that, for any p € (n, p,) and
fewhn

_1

n n

M5 <Co(1-2) " 197l
o,n

Thus, in the sense of possibly non-optimal constant, our MT
inequality is stronger than the classical one.
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Affine fractional MT Inequality

(Dominguez—L.—Tikhonov—Yang—Yuan 2025)

Let n > 2. Then there exists an absolute constant ¢ € (0, co) such that,
1
forany a € (0, -—=-),
nl
f(x

sup sup ®pn a! () ——F 1] dx < oo.

pE(n700) fEBpg,n RN ”f||Lp+En7p(1 = g)ﬁ“—lpif;f’iﬁ
0
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e Polya—Szegd inequality for Besov polar projection bodies:
*,8 —% *,8 —%
M| " < [Mpgf| ™

e This, together with (4), further implies

1
1 - n\»
Iflla < cqm {HfHLp +=np (1 - p>

ol=

.
Mpnf

} |
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Relations with affine MT inequality

BBM type formula also holds for polar projection bodies: If f € C2,

. n\n %3
i (-3 i

Hence, for any f € C?,

nl
, f
Ilnr'7| / Ppn | @ ()] — T dx
Pt Jer | 0)e|Np At P

flle + Znp(1 = 5

:/ o, a[ )] ] dx. (5)
" [fllLn + On(55) 7 (MR 2

Therefore, in the sense of possibly non-optimal constant, our affine MT

then

P 1 _1
— 7 M

inequality can go back to the classical one.



Relations with affine MT inequality

If f ¢ W'-", then there exist two positive constants p,, € (n, 00)
and C, € (0, c0), depending only on n, such that, for any p € (n, pn),

(-3)

This also means that, in the sense of possibly non-optimal constant,

x, 0 B
Moar " <Cn2(2n)”<1 + l)w P M| n

our affine MT inequality is stronger than the classical one.
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Thank you!
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