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Dirichlet problem and Poisson kernel

Let B be a unit ball in Rn, let ∆ =
∑n

i=1
∂2

∂x2
i

be the Laplace

operator.

For a continuous function f on the boundary ∂B, the Dirichlet
problem {

∆u = 0, in B
u = f , on ∂B

has a unique solution u given by

u(x) =

∫
∂B

f (ζ)P(x , ζ)dσ(ζ), x ∈ B,

where σ is the normalized surface measure on ∂B and
P(x , ζ) = 1−|x |2

|x−ζ|n is called the Poisson kernel.
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The probabilistic point of view

Let {Xt}t≥0 be the standard Brownian motion starting at some
point x ∈ B.

Denote by τ := inf{t > 0 : Xt ∈ ∂B} the exit time of Xt from B.

The hitting probability is

Px(Xτ ∈ A) =

∫
A

P(x , ζ)dσ(ζ),

for any Borel set A ⊆ ∂B.

The measure P(x , ζ)dσ(ζ) is also called the harmonic measure of
the unit ball B.
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Dirichlet forms on fractals

Let (M, d , µ) be a metric measure space.

A Dirichlet form is a closed densely-defined nonnegative
symmetric bilinear form (E ,F) on L2(M, dµ) satisfying the
Markovian property, i.e. u ∈ F implies ū = (u ∨ 0) ∧ 1 ∈ F and
E(ū) ≤ E(u).

Example: E(u) =
∫

Ω |∇u|2dx on an Euclidean domain Ω.

Dirichlet form has an infinitesimal generator L satisfying
E(u, v) = (−Lu, v), called the Laplacian.

Many examples are constructed on fractals: post-critically finite
(p.c.f.) self-similar sets (including nested fractals), generalized
Sierpinski carpets.
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p.c.f. self-similar sets

Let N ≥ 2, {Fi}Ni=1 be a collection of contractions on (X , d). The
self-similar set associated with the iterated function system (IFS)
{Fi}Ni=1:

K =
N⋃
i=1

Fi (K ).

Let Σ = {1, . . . ,N} be the alphabets. Let π : Σ∞ → K be
defined by {x} = {π(ω)} =

⋂
n≥1 F[ω]n(K ) with [ω]n = ω1 · · ·ωn.

Following Kigami, the critical set C and post-critical set P

C = π−1

 ⋃
1≤i<j≤N

(Fi (K ) ∩ Fj(K ))

 , P =
⋃
m≥1

σm(C),

where σ : Σ∞ → Σ∞ is the left shift operator.
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p.c.f. self-similar sets

If P is finite, we call {Fi}Ni=1 a post-critically finite (p.c.f.) IFS,
and K a p.c.f. self-similar set. The boundary of K is defined by
V0 = π(P). We also inductively denote

Vn =
⋃
i∈Σ

Fi (Vn−1), V∗ =
∞⋃
n=0

Vn.

It is clear that {Vn}n≥0 is an increasing sequence of sets and K is
the closure of V∗. We always assume that (K , d) is connected.
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p.c.f. self-similar sets

Our basic assumption on a p.c.f. self-similar set K is the existence
of a regular self-similar resistance form (E ,F) with domain
F = {u ∈ C (K ) : E [u] := E(u, u) <∞}:

E [u] =
N∑
i=1

1

ri
E [u ◦ Fi ], u ∈ F , (1)

where 0 < ri < 1, i = 1, . . . ,N are called energy renormalizing
factors. By iterating (1), we see that for any n ≥ 1,

E [u] =
∑
|ω|=n

1

rω
E [u ◦ Fω], u ∈ F , (2)

where rω = rω1 · · · rωn for ω = ω1 · · ·ωn. We call
EFω(K)[u] := 1

rω
E [u ◦ Fω] the energy of u on the cell Fω(K ).
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the nested fractals

The nested fractals, introduced in [Lindstrøm 1990], is a class of
p.c.f. fractals generated by an iterated function system (IFS)
{Fi}Ni=1 on Rd with a common contraction ratio and is

I connected

I symmetric

I OSC

I nesting

On a nested fractal, there exists a unique symmetric Dirichlet form
(E ,F) (existence by Lindstrøm [Lindstrøm 1990] and uniqueness
by Sabot [Sabot 1997]) satisfying the energy self-similar identity:
for any u ∈ F , u ◦ Fi ∈ F for 1 ≤ i ≤ N and

E(u) =
1

r

N∑
i=1

E(u ◦ Fi ).
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examples of nested fractals

Figure: Sierpinski
gasket (r = 3

5 )
Figure: Vicsek
set (r = 1

3 )
Figure: Lindstrøm
snowflake(r ≈
0.543)
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resistance forms on p.c.f. fractals

We say a function h ∈ F harmonic in K if

E [h] = inf{E [u] : u ∈ F , u|V0 = h|V0}.

Let A,B be two disjoint nonempty closed subsets of K , the
effective resistance R(A,B) between A and B is defined as

R(A,B)−1 := inf{E [u] : u ∈ F , u|A = 0, u|B = 1}.

The infimum is attained by a unique function which is harmonic in
K \ (A ∪ B). When we only consider points, by setting R(x , x) = 0
for all x ∈ K , the resistance R(·, ·) is a metric on K , which is
called the effective resistance metric. It is known that

diamR(Fω(K )) � rω, for any finite word ω.
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some notations in electric networks

Let G be a finite set, and let g : G × G → R be a nonnegative
function such that

g(p, q) = g(q, p), g(p, p) = 0, p, q ∈ G .

For p, q ∈ G , we write p ∼ q if g(p, q) > 0. We always assume
that (G , g) is connected, and call (G , g) an electric network.
For u ∈ `(G ), we define the energy of u on (G , g) to be

EG [u] :=
1

2

∑
p,q∈G

g(p, q)(u(p)− u(q))2.

Then (EG , `(G )) is a resistance form on G .
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some notations in electric networks

For u ∈ `(G ), we define the Neumann derivative of u (flux of ∇u,
the flow associated with u) at some vertex p ∈ G as

(du)p =
∑
q∈G

g(p, q)(u(p)− u(q)). (3)

Then clearly, for u, v ∈ `(G ),∑
p∈G

v(p)(du)p =
∑
p∈G

u(p)(dv)p, (4)

and in particular, ∑
p∈G

(du)p = 0. (5)
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some notations in electric networks

For a resistance form (E ,F) on a self-similar set K , it is known
that the trace of E [·] to a nonempty finite set V ⊂ K is an electric
network (V , g) determined by∑
p,q∈V

g(p, q)(u(p)−u(q))2 = min{E [v ] : v ∈ F , v |V = u}, u ∈ `(V ),

while the unique function v minimizing the right hand side is
harmonic in K \ V .
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boundary value problem in domains of p.c.f. sets

For a given p.c.f. self-similar set K equipped with a local regular
self-similar Dirichlet form, we are concerned with the boundary
value problems for harmonic functions on a domain Ω in K (which
means Ω is a nonempty open connected subset of K ).{

E(u, v) = 0, ∀v ∈ F0(Ω)
u = f , on ∂Ω

We mainly focus on two problems:

I find the exact description of the hitting probability from a
point in Ω to the boundary;

I estimate the energy of a harmonic function generated by its
boundary values.
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Known results

[Owen-Strichartz 2012] initiated the study of boundary value
problems for domains of the standard Sierpinski Gasket (SG).

p2p1

p3

Figure: A domain in SG with a bottom line boundary
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Known results

It is shown in [Owen-Strichartz 2012] that the harmonic measure
with respect to p3 for the above domain is the uniform (Lebesgue)
measure on the bottom line L = p1p2, i.e.

u(p3) =

∫
L

f (x)dx .

The key technique they employ is decomposition of a function f on
the boundary by using Haar basis.
Guo, Kogan, Qiu and Strichartz [Guo et al. 2014] extended this
result to more general domains with an arbitrary horizontal cut in
SG.
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Known results

For the level-3 SG, Cao and Qiu [Cao-Qiu 2020] had a very
detailed investigation on the domains with horizontal cut. In
particular, for the domain with bottom line L = p1p2 as boundary,
they showed that the harmonic measure with respect to p3 is a

self-similar measure on L with weight µ =
(

6+η
18+4η ,

6+2η
18+4η ,

6+η
18+4η

)
with η =

√
2353−15

14 ≈ 2.3934.

p2p1

p3
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Known results on SGs

[Li-Strichartz 2014] studied the half domain of SG.

p1 p2·

p3

They obtained the harmonic measure with respect to p1 is

µ =
∞∑
n=0

2

3n+1
δF3n1(p2).
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Known results on SGs

[Cao-Qiu 2020] also considered the level-3 SG.

p1 p2·

q

F1

F2

p3

They obtained the harmonic measure with respect to p1 is

µ =
2

7
δq +

∞∑
|ω|=1

µωδFω(q), µ1 =
4

7
, µ2 =

1

7
.
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domains in p.c.f. fractals

Let (K , {Fi}Ni=1) be a p.c.f. fractal. For P ≥ 1, let
{Ω1,Ω2, . . . ,ΩP} be a vector of connected open subsets of K with
nonempty boundary Di := ∂Ωi . We assume {(Ωi ,Di )}1≤i≤P
satisfy the following boundary graph-directed condition (BGD):

for 1 ≤ i ≤ P and 1 ≤ k ≤ N, if Ωi ∩ Fk(K ) 6= ∅ and
Di ∩ Fk(K ) 6= ∅, then there exists 1 ≤ j ≤ P such that

Ωi ∩ Fk(K ) = Fk(Ωj), Di ∩ Fk(K ) = Fk(Dj).
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domains satisfying BGD

Example 1.

•
•

Figure: domains in the Sierpinski gasket
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domains satisfying BGD

Example 2.

Figure: domains with graph-directed boundary in the Lindstrøm’s
snowflake
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domains satisfying BGD

Example 3.

p1 p4

p5p6

Figure: a half domain in the hexagasket
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domains satisfying BGD

Example 4.

p3p4

p1 p2Ω1 Ω2
Figure: A couple of domains in the Vicsek set
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notations for graph-directed self-similar sets

Let (A, Γ) be a directed graph with A = {1, . . . ,P} and edges Γ.
For γ ∈ Γ, if γ is a directed edge from i to j for some i , j ∈ A, we
denote by I (γ) = i and T (γ) = j the initial vertex and the
terminal vertex separately.
For i , j ∈ A, denote Γi = {γ ∈ Γ : I (γ) = i} and
Γi ,j = {γ ∈ Γ : I (γ) = i ,T (γ) = j}. Then each edge γ is
associated with a contractive map Φγ and

Di =
P⋃
j=1

⋃
γ∈Γi,j

Φγ(Dj), 1 ≤ i ≤ P.

Let m ≥ 1, a finite word γ = γ1γ2 · · · γm with γi ∈ Γ for
i = 1, . . . ,m is called admissible if T (γi ) = I (γi+1) for any
i = 1, . . . ,m − 1; write I (γ) = I (γ1), T (γ) = T (γm).
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notations for graph-directed self-similar sets

We will also use the notation of infinite admissible words
γ = γ1γ2 · · · with T (γi ) = I (γi+1) for all i ≥ 1. We denote by Γ∞
the collection of all infinite admissible words and
Γ∞(i) = {γ = γ1γ2 · · · ∈ Γ∞ : I (γ1) = i} for i = 1, . . . ,P.
For γ = γ1γ2 · · · , η = η1η2 · · · ∈ Γ∞ with γ 6= η, let γ ∧ η be the
common prefix of γ and η, then

|γ ∧ η| = min {i ≥ 1 : γi 6= ηi} − 1.

Define

ρ(γ, η) =

{
2−|γ∧η|, γ 6= η,

0, γ = η.

Then ρ is a metric on Γ∞ and (Γ∞, ρ) is a complete metric space.
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properties of the BGD domains

Proposition (G.-Qiu 2024)

Assume {Ωi}Pi=1 satisfies the BGD condition.
(i). If Ωi ∩ V0 6= ∅, then Ωj ∩ V0 6= ∅ provided that Γ(i , j) 6= ∅;
(ii). There exists n0 ≥ 1 such that ΩT (γ) ∩ V0 6= ∅ for all n ≥ n0

and γ ∈ Γn.

Proposition (G.-Qiu 2024)

Assume {Ωi}Pi=1 satisfies the BGD condition. Then each Ωi is
arcwise connected.
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geometric boundary and resistance boundary

Let Ω be a domain in K . The geometric boundary of Ω in K is
defined through the original metric in K .
For a function u ∈ C (Ω), denote the energy of u on Ω as EΩ[u].
Denote FΩ = {u ∈ C (Ω) : EΩ[u] <∞}. It is direct to check that
(EΩ,FΩ) is a resistance form on Ω. Define the effective resistance
metric RΩ(x , y) for two points x , y in Ω with respect to EΩ: for
x , y ∈ Ω and x 6= y ,

RΩ(x , y)−1 := inf{EΩ[u] : u ∈ FΩ, u(x) = 0, u(y) = 1}.

Then RΩ(·, ·) is a metric on Ω. Let Ω̃ be the completion of Ω
under RΩ, and denote ∂Ω = Ω̃ \ Ω, the resistance boundary of Ω.
Recall that there is another resistance metric R(·, ·) on Ω inherited
from that on K .
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properties of the BGD domains

Proposition (G.-Qiu 2023)

Let A ⊂ Ω be a nonempty closed subset. Then there exists C > 1
depending on A such that

R(x , y) ≤ RΩ(x , y) ≤ CR(x , y), ∀x , y ∈ A.

In addition, (A,RΩ) is homeomorphic to (A,R) and (A, d).

Proposition (G.-Qiu 2024)

There exists n1 ≥ 1 such that for each Ωi with Ωi ∩ V1 6= ∅ and
x , y ∈ Ωi ∩ V1, there exists a chain of n1-cells {Fω(k)(K )}mk=1 in Ωi

connecting x and y.
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properties of the BGD domains

Theorem (G.-Qiu 2024)

Each (Ωi ,RΩi
) is a bounded metric space.

Theorem (G.-Qiu 2024)

For i = 1, . . . ,P, (∂Ωi ,RΩi
) is homeomorphic to (Γ∞(i), ρ).
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The flux transfer matrices

Let (A, Γ) be the directed graph induced from the BGD condition.
For each γ ∈ Γ(i , j), there is a contraction map Φγ such that
Φγ(Ωj) ⊂ Ωi . In the following, we associate each γ with a Q × Q
real matrix Mγ , whose (k, `)-entry represents:

the flux of the unit flow on Ω̃i from ∂Ωi to pk through Φγ(p`)
outwards from Φγ(Ωj).

For any 1 ≤ k ≤ Q, if pk /∈ Ωi , we simply set the k-th row of Mγ

to be zeros; otherwise, if pk ∈ Ωi , let ϕ be the realization of
RΩi

(∂Ωi , pk). Let
vk := RΩi

(∂Ωi , pk)ϕ,

then vk satisfies (dvk)pk = 1. Denote the restriction of the
function vk on Φγ(Ωj) as ṽk and define Mγ(k, `) = (dṽk)Φγ(p`).
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The hitting probabilities

Lemma (G.-Qiu 2024)

For 1 ≤ i ≤ P and 1 ≤ k ≤ Q such that pk ∈ Ωi ∩ V0, we have

Q∑
`=1

Mγ(k, `) > 0, ∀γ ∈ Γ(i),

and ∑
γ∈Γ(i)

Q∑
`=1

Mγ(k , `) = 1.
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The hitting probabilities

Definition

For γ = γ1 · · · γm ∈ Γm(i), write Mγ = Mγ1 · · ·Mγm . We define

µi ,k(∂Ωγ) = etkMγ1.

Note that µi ,k(∂Ωγ) is the summation of the k-th row of Mγ .

Proposition

For pk ∈ Ωi ∩ V0, µi ,k extends to be a probability measure on ∂Ωi .
Moreover, we have the identity

µi ,k =
∑

γ∈Γ(i),1≤`≤Q

Mγ(k , `)µT (γ),` ◦ θ−1
γ .
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first main result

Theorem (G.-Qiu 2024)

For pk ∈ Ωi ∩ V0, the probability measure µi ,k in Definition 8 is
the hitting probability of pk to the R-boundary ∂Ωi . Consequently,
for any f ∈ C (∂Ωi ), the unique harmonic function u on Ωi

generated by f , i.e. u|∂Ωi
= f , satisfies

u(pk) =

∫
∂Ωi

f (x)dµi ,k(x).
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property of the hitting measures

Theorem

For each i ∈ A, assume p, p′ ∈ Ωi ∩ V0 and let µi ,p, µi ,p′ be the
associated probability measures. Then there exists a constant
C > 0 such that for any measurable set E ⊂ ∂Ωi ,

C−1µi ,p(E ) ≤ µi ,p′(E ) ≤ Cµi ,p(E ).
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Examples

Example 1:

Ω1 Ω2

A = {1, 2}, Γ = {γ1, γ2, γ3}.

1 2 γ3γ1
γ2
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Examples

A = {1, 2}, Γ = {γ1, γ2, γ3}.

1 2 γ3γ1
γ2

One may compute

Mγ1
=

 1/3 0 0
0 0 0
0 0 0

 , Mγ2
=

 1 0 −1/3
0 0 0
0 0 0

 ,Mγ3
=

 2/3 0 1/3
0 0 0

1/3 0 2/3

 .

The hitting probability from p1 to the boundary ∂Ω is

µ =
∞∑
n=0

2

3n+1
δF3n1(p2).
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Examples

Example 2:

p1 p4

p5p6

Figure: a half domain in the hexagasket

The associated flux transfer matrices are

Mγ1
=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1/3 0
0 0 0 0 2/3 0

 ,Mγ2
=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2/3
0 0 0 0 0 1/3

 .

The hitting probability from p5 (or p6) is a twisted
(1/3, 2/3)-self-similar measures on ∂Ω.
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Examples

Example 2:

Ω1 Ω2

Directed graph A = {1, 2} and Γ = {γi}5
i=1.

1 2 γ5

γ1

γ2

γ3

γ4
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Examples

The associated flux transfer matrices are

Mγ1
=


0 0 0 0
0 0 0 0
0 0 1/2 0
0 0 1/2 0

 ,Mγ2
=


0 0 0 0
0 0 0 0
0 0 0 1/2
0 0 0 1/2

 ,Mγ3
=


0 0 0 0
0 0 0 0
0 0 0 0

0 0 13+t
26+14t

0

 ,

Mγ4
=


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 13+t
26+14t

 ,Mγ5
=


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 6t
13+7t

 , where t =

√
69− 2

5
.

For Ω1, the hitting probability from p3 (or p4) is the
(1/2, 1/2)-self-similar measures on ∂Ω1.
For Ω2, the hitting probability µ from p4 to ∂Ω2 is: for any k ≥ 0,
µ restricted on the boundary of F2k1(Ω1) is (1/2, 1/2)-self-similar

measure with total weight
(

6t
13+7t

)k
( 13+t

26+14t ).
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The energy estimates

For given function f on the boundary ∂Ω, let u be its harmonic
extension in Ω.
Want: express the energy of u via its boundary value f .

Classical case:
Let B = {x ∈ R2 : |x | < 1} be the unit disc and S = ∂B. For
f ∈ L1(S), let u be harmonic extension of f in B, then∫∫

B
|∇u(x)|2dx =

1

16π

∫
S

∫
S

|f (θ)− f (ϑ)|2

sin2( θ−ϑ2 )
dθdϑ.

The integral on the RHS is known as the Douglas integral.
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The energy estimates on binary trees

Random walks on binary trees .

Theorem (Kigami 2010, Theorem 5.6)

Let T be a binary tree with energy form (E ,F)

ET [f ] = Σw∈TΣi=1,2
1

rwi
(f (v)− f (vi))2,

and F = {f | ET [f ] <∞}. Let Σ = ∂T be its Martin boundary.
For w ∈ T , let uw be the average of u on Σw w.r.t. the hitting
probability ν. Then the induced form (EΣ,FΣ) on Σ is

EΣ[u] = Σw∈T
|uw1 − uw2|2

rw1 + Rw1 + rw2 + Rw2
,

with FΣ = {u | EΣ[u] <∞}.
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The energy estimates on hyperbolic graphs

Random walks on (hyperbolic) augmented trees.

Theorem (Kong-Lau-Wong 2017, Theorem 1.4)

Let EX be the energy form of the λ-natural random walk on the
augmented tree (X ,E ) of an IFS satisfying open set condition.
Then the induced form on the Martin boundary ∂X (= K ) satisfies

EK [u] �
∫
K

∫
K

|u(x)− u(y)|2

|x − y |α+β
dν(x)dν(y),

where the positive constant in “�” is independent of u.
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The energy estimates

Lemma

Let u be a harmonic function on K . We have

E [u] �
∑

p,q∈V0

|u(p)− u(q)|2 �
∑
p∈V0

|(du)p|2 ,

where the positive constants in the two “�”’s are independent of
u.
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The energy estimates

For f ∈ C (∂Ω) and p ∈ V (γ), we denote

fγ,p =

∫
∂ΩT (γ)

f ◦ θγdµT (γ),p.

Theorem (G.-Qiu 2024)

Assume Ω ∩ V0 6= ∅. For f ∈ C (∂Ω), let u be the harmonic
extension of f in Ω. Then

EΩ[u] �
∞∑

m=0

∑
γ∈Γm

1

rγ

∑
ξ,η: ξ−=η−=γ

∑
p∈V (ξ), q∈V (η)

(fξ,p − fη,q)2 ,

where the constant in “�” does not depend on u or f .
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Thank You !!
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