Boundary value problems for harmonic functions on domains in p.c.f. self-similar sets

Qingsong Gu (Joint work with Hua Qiu)

Nanjing University

March 2024

(@Zhejiang University of Technology, Hangzhou)

伺下 イヨト イヨト

Dirichlet problem and Poisson kernel

Let *B* be a unit ball in \mathbb{R}^n , let $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ be the Laplace operator.

For a continuous function f on the boundary ∂B , the **Dirichlet** problem

$$\begin{cases} \Delta u = 0, & \text{in } B \\ u = f, & \text{on } \partial B \end{cases}$$

has a unique solution u given by

$$u(x) = \int_{\partial B} f(\zeta) P(x,\zeta) d\sigma(\zeta), \qquad x \in B,$$

where σ is the normalized surface measure on ∂B and $P(x,\zeta) = \frac{1-|x|^2}{|x-\zeta|^n}$ is called the **Poisson kernel**.

伺い イラト イラト

The probabilistic point of view

Let $\{X_t\}_{t\geq 0}$ be the standard Brownian motion starting at some point $x \in B$.

Denote by $\tau := \inf\{t > 0 : X_t \in \partial B\}$ the exit time of X_t from B.

The hitting probability is

$$\mathbb{P}_{x}(X_{\tau}\in A)=\int_{A}P(x,\zeta)d\sigma(\zeta),$$

for any Borel set $A \subseteq \partial B$.

The measure $P(x,\zeta)d\sigma(\zeta)$ is also called the harmonic measure of the unit ball *B*.

伺い イラト イラト

Dirichlet forms on fractals

Let (M, d, μ) be a metric measure space.

A **Dirichlet form** is a closed densely-defined nonnegative symmetric bilinear form $(\mathcal{E}, \mathcal{F})$ on $L^2(M, d\mu)$ satisfying the Markovian property, i.e. $u \in \mathcal{F}$ implies $\bar{u} = (u \lor 0) \land 1 \in \mathcal{F}$ and $\mathcal{E}(\bar{u}) \leq \mathcal{E}(u)$.

Example: $\mathcal{E}(u) = \int_{\Omega} |\nabla u|^2 dx$ on an Euclidean domain Ω .

Dirichlet form has an infinitesimal generator \mathcal{L} satisfying $\mathcal{E}(u, v) = (-\mathcal{L}u, v)$, called the Laplacian.

Many examples are constructed on **fractals**: post-critically finite (p.c.f.) self-similar sets (including nested fractals), generalized Sierpinski carpets.

・ 同 ト ・ ヨ ト ・ ヨ ト

• • = • • = •

p.c.f. self-similar sets

Let $N \ge 2$, $\{F_i\}_{i=1}^N$ be a collection of contractions on (X, d). The self-similar set associated with the iterated function system (IFS) $\{F_i\}_{i=1}^N$:

$$K = \bigcup_{i=1}^{N} F_i(K).$$

Let $\Sigma = \{1, \ldots, N\}$ be the alphabets. Let $\pi : \Sigma^{\infty} \to K$ be defined by $\{x\} = \{\pi(\omega)\} = \bigcap_{n \ge 1} F_{[\omega]_n}(K)$ with $[\omega]_n = \omega_1 \cdots \omega_n$. Following Kigami, the critical set C and post-critical set \mathcal{P}

$$\mathcal{C} = \pi^{-1} \left(\bigcup_{1 \leq i < j \leq N} \left(F_i(K) \cap F_j(K) \right) \right), \qquad \mathcal{P} = \bigcup_{m \geq 1} \sigma^m(\mathcal{C}),$$

where $\sigma: \Sigma^{\infty} \to \Sigma^{\infty}$ is the left shift operator.

p.c.f. self-similar sets

If \mathcal{P} is finite, we call $\{F_i\}_{i=1}^N$ a post-critically finite (p.c.f.) IFS, and K a p.c.f. self-similar set. The boundary of K is defined by $V_0 = \pi(\mathcal{P})$. We also inductively denote

$$V_n = \bigcup_{i \in \Sigma} F_i(V_{n-1}), \qquad V_* = \bigcup_{n=0}^{\infty} V_n.$$

It is clear that $\{V_n\}_{n\geq 0}$ is an increasing sequence of sets and K is the closure of V_* . We always assume that (K, d) is connected.

高 と く ヨ と く ヨ と

= nac

p.c.f. self-similar sets

Our basic assumption on a p.c.f. self-similar set K is the existence of a regular self-similar resistance form $(\mathcal{E}, \mathcal{F})$ with domain $\mathcal{F} = \{u \in C(K) : \mathcal{E}[u] := \mathcal{E}(u, u) < \infty\}$:

$$\mathcal{E}[u] = \sum_{i=1}^{N} \frac{1}{r_i} \mathcal{E}[u \circ F_i], \qquad u \in \mathcal{F},$$
(1)

where $0 < r_i < 1, i = 1, ..., N$ are called energy renormalizing factors. By iterating (1), we see that for any $n \ge 1$,

$$\mathcal{E}[u] = \sum_{|\omega|=n} \frac{1}{r_{\omega}} \mathcal{E}[u \circ F_{\omega}], \qquad u \in \mathcal{F},$$
(2)

where $r_{\omega} = r_{\omega_1} \cdots r_{\omega_n}$ for $\omega = \omega_1 \cdots \omega_n$. We call $\mathcal{E}_{F_{\omega}(K)}[u] := \frac{1}{r_{\omega}} \mathcal{E}[u \circ F_{\omega}]$ the energy of u on the cell $F_{\omega}(K)$.

Boundary value problems for harmonic functions on domains in p

the nested fractals

The nested fractals, introduced in [Lindstrøm 1990], is a class of p.c.f. fractals generated by an iterated function system (IFS) $\{F_i\}_{i=1}^N$ on \mathbb{R}^d with a common contraction ratio and is

- connected
- symmetric
- ► OSC
- nesting

On a nested fractal, there exists a unique symmetric Dirichlet form $(\mathcal{E}, \mathcal{F})$ (existence by Lindstrøm [Lindstrøm 1990] and uniqueness by Sabot [Sabot 1997]) satisfying the energy self-similar identity: for any $u \in \mathcal{F}$, $u \circ F_i \in \mathcal{F}$ for $1 \leq i \leq N$ and

$$\mathcal{E}(u) = \frac{1}{r} \sum_{i=1}^{N} \mathcal{E}(u \circ F_i).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

hitting probabilities

examples of nested fractals

Figure: Sierpinski gasket $(r = \frac{3}{5})$

Figure: Vicsek set $(r = \frac{1}{3})$

Figure: Lindstrøm snowflake($r \approx 0.543$)

naa

resistance forms on p.c.f. fractals

We say a function $h \in \mathcal{F}$ harmonic in K if

$$\mathcal{E}[h] = \inf \{ \mathcal{E}[u] : u \in \mathcal{F}, u|_{V_0} = h|_{V_0} \}.$$

Let A, B be two disjoint nonempty closed subsets of K, the effective resistance R(A, B) between A and B is defined as

 $R(A, B)^{-1} := \inf \{ \mathcal{E}[u] : u \in \mathcal{F}, u|_A = 0, u|_B = 1 \}.$

The infimum is attained by a unique function which is harmonic in $K \setminus (A \cup B)$. When we only consider points, by setting R(x, x) = 0 for all $x \in K$, the resistance $R(\cdot, \cdot)$ is a metric on K, which is called the effective resistance metric. It is known that

diam_R($F_{\omega}(K)$) $\asymp r_{\omega}$, for any finite word ω .

some notations in electric networks

Let G be a finite set, and let $g:G\times G\to \mathbb{R}$ be a nonnegative function such that

 $g(p,q)=g(q,p),\ g(p,p)=0,\quad p,q\in G.$

For $p, q \in G$, we write $p \sim q$ if g(p,q) > 0. We always assume that (G,g) is connected, and call (G,g) an electric network. For $u \in \ell(G)$, we define the energy of u on (G,g) to be

$$\mathcal{E}_G[u] := \frac{1}{2} \sum_{p,q \in G} g(p,q)(u(p) - u(q))^2.$$

Then $(\mathcal{E}_G, \ell(G))$ is a resistance form on G.

伺 とう ヨン うちょう

some notations in electric networks

For $u \in \ell(G)$, we define the Neumann derivative of u (flux of ∇u , the flow associated with u) at some vertex $p \in G$ as

$$(du)_p = \sum_{q \in G} g(p,q)(u(p) - u(q)).$$
 (3)

Then clearly, for $u, v \in \ell(G)$,

$$\sum_{p\in G} v(p)(du)_p = \sum_{p\in G} u(p)(dv)_p, \tag{4}$$

and in particular,

$$\sum_{p\in G} (du)_p = 0.$$
⁽⁵⁾

some notations in electric networks

For a resistance form $(\mathcal{E}, \mathcal{F})$ on a self-similar set K, it is known that the trace of $\mathcal{E}[\cdot]$ to a nonempty finite set $V \subset K$ is an electric network (V, g) determined by

 $\sum_{p,q\in V} g(p,q)(u(p)-u(q))^2 = \min\{\mathcal{E}[v]: v \in \mathcal{F}, v|_V = u\}, \quad u \in \ell(V),$

while the unique function v minimizing the right hand side is harmonic in $K \setminus V$.

高 と く ヨ と く ヨ と

boundary value problem in domains of p.c.f. sets

For a given p.c.f. self-similar set K equipped with a local regular self-similar Dirichlet form, we are concerned with the boundary value problems for harmonic functions on a domain Ω in K (which means Ω is a nonempty open connected subset of K).

 $\begin{cases} \mathcal{E}(u,v) = 0, & \forall v \in \mathcal{F}_0(\Omega) \\ u = f, & \text{on } \partial\Omega \end{cases}$

We mainly focus on two problems:

- find the exact description of the hitting probability from a point in Ω to the boundary;
- estimate the energy of a harmonic function generated by its boundary values.

イロト 不得 トイヨト イヨト 二日

Known results

[Owen-Strichartz 2012] initiated the study of boundary value problems for domains of the standard Sierpinski Gasket (SG).

Figure: A domain in SG with a bottom line boundary

Known results

It is shown in [Owen-Strichartz 2012] that the harmonic measure with respect to p_3 for the above domain is the uniform (Lebesgue) measure on the bottom line $L = \overline{p_1 p_2}$, i.e.

$$u(p_3)=\int_L f(x)dx.$$

The key technique they employ is decomposition of a function f on the boundary by using **Haar basis**.

Guo, Kogan, Qiu and Strichartz [Guo et al. 2014] extended this result to more general domains with an arbitrary horizontal cut in SG.

・ 戸 ・ ・ ヨ ・ ・ (戸 ・)

Known results

For the level-3 SG, Cao and Qiu [Cao-Qiu 2020] had a very detailed investigation on the domains with horizontal cut. In particular, for the domain with bottom line $L = \overline{p_1 p_2}$ as boundary, they showed that the harmonic measure with respect to p_3 is a self-similar measure on L with weight $\mu = \left(\frac{6+\eta}{18+4\eta}, \frac{6+2\eta}{18+4\eta}, \frac{6+\eta}{18+4\eta}\right)$ with $\eta = \frac{\sqrt{2353}-15}{14} \approx 2.3934$.

Known results on SGs

[Li-Strichartz 2014] studied the half domain of SG.

They obtained the harmonic measure with respect to p_1 is

$$\mu = \sum_{n=0}^{\infty} \frac{2}{3^{n+1}} \delta_{F_{3^n}(p_2)}.$$

Known results on SGs

[Cao-Qiu 2020] also considered the level-3 SG.

They obtained the harmonic measure with respect to p_1 is

$$\mu = \frac{2}{7}\delta_{q} + \sum_{|\omega|=1}^{\infty} \mu_{\omega}\delta_{F_{\omega}(q)}, \qquad \mu_{1} = \frac{4}{7}, \mu_{2} = \frac{1}{7}.$$

domains in p.c.f. fractals

Let $(K, \{F_i\}_{i=1}^N)$ be a p.c.f. fractal. For $P \ge 1$, let $\{\Omega_1, \Omega_2, \ldots, \Omega_P\}$ be a vector of connected open subsets of K with nonempty boundary $D_i := \partial \Omega_i$. We assume $\{(\Omega_i, D_i)\}_{1 \le i \le P}$ satisfy the following **boundary graph-directed condition (BGD)**:

for $1 \le i \le P$ and $1 \le k \le N$, if $\Omega_i \cap F_k(K) \ne \emptyset$ and $D_i \cap F_k(K) \ne \emptyset$, then there exists $1 \le j \le P$ such that

 $\Omega_i \cap F_k(K) = F_k(\Omega_j), \qquad D_i \cap F_k(K) = F_k(D_j).$

Boundary graph-directed conditions

hitting probabilities

500

domains satisfying BGD

Example 1.

Figure: domains in the Sierpinski gasket

Qingsong Gu (Joint work with Hua Qiu) Boundary value problems for harmonic functions on domains in p

Sac

domains satisfying BGD

Example 2.

Figure: domains with graph-directed boundary in the Lindstrøm's snowflake

hitting probabilities

domains satisfying BGD

Example 3.

Figure: a half domain in the hexagasket

3

hitting probabilities

500

domains satisfying BGD

Example 4.

notations for graph-directed self-similar sets

Let (\mathcal{A}, Γ) be a directed graph with $\mathcal{A} = \{1, \ldots, P\}$ and edges Γ . For $\gamma \in \Gamma$, if γ is a directed edge from *i* to *j* for some $i, j \in \mathcal{A}$, we denote by $I(\gamma) = i$ and $T(\gamma) = j$ the **initial vertex** and the **terminal vertex** separately. For $i, j \in \mathcal{A}$, denote $\Gamma_i = \{\gamma \in \Gamma : I(\gamma) = i\}$ and $\Gamma_{i,j} = \{\gamma \in \Gamma : I(\gamma) = i, T(\gamma) = j\}$. Then each edge γ is associated with a contractive map Φ_{γ} and

$$D_i = \bigcup_{j=1}^P \bigcup_{\gamma \in \Gamma_{i,j}} \Phi_{\gamma}(D_j), \qquad 1 \leq i \leq P.$$

Let $m \ge 1$, a finite word $\gamma = \gamma_1 \gamma_2 \cdots \gamma_m$ with $\gamma_i \in \Gamma$ for $i = 1, \ldots, m$ is called admissible if $T(\gamma_i) = I(\gamma_{i+1})$ for any $i = 1, \ldots, m-1$; write $I(\gamma) = I(\gamma_1)$, $T(\gamma) = T(\gamma_m)$.

notations for graph-directed self-similar sets

We will also use the notation of infinite admissible words $\gamma = \gamma_1 \gamma_2 \cdots$ with $T(\gamma_i) = I(\gamma_{i+1})$ for all $i \ge 1$. We denote by Γ_{∞} the collection of all infinite admissible words and $\Gamma_{\infty}(i) = \{\gamma = \gamma_1 \gamma_2 \cdots \in \Gamma_{\infty} : I(\gamma_1) = i\}$ for $i = 1, \dots, P$. For $\gamma = \gamma_1 \gamma_2 \cdots, \eta = \eta_1 \eta_2 \cdots \in \Gamma_{\infty}$ with $\gamma \ne \eta$, let $\gamma \land \eta$ be the common prefix of γ and η , then

$$|\gamma \wedge \eta| = \min \{i \ge 1 : \gamma_i \neq \eta_i\} - 1.$$

Define

$$\rho(\gamma,\eta) = \begin{cases} 2^{-|\gamma \wedge \eta|}, & \gamma \neq \eta, \\ 0, & \gamma = \eta. \end{cases}$$

Then ρ is a metric on Γ_{∞} and (Γ_{∞}, ρ) is a complete metric space.

properties of the BGD domains

Proposition (G.-Qiu 2024)

Assume $\{\Omega_i\}_{i=1}^P$ satisfies the BGD condition. (i). If $\Omega_i \cap V_0 \neq \emptyset$, then $\Omega_j \cap V_0 \neq \emptyset$ provided that $\Gamma(i, j) \neq \emptyset$; (ii). There exists $n_0 \ge 1$ such that $\Omega_{T(\gamma)} \cap V_0 \neq \emptyset$ for all $n \ge n_0$ and $\gamma \in \Gamma_n$.

Proposition (G.-Qiu 2024)

Assume $\{\Omega_i\}_{i=1}^P$ satisfies the BGD condition. Then each Ω_i is arcwise connected.

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ …

geometric boundary and resistance boundary

Let Ω be a domain in K. The geometric boundary of Ω in K is defined through the original metric in K.

For a function $u \in C(\Omega)$, denote the energy of u on Ω as $\mathcal{E}_{\Omega}[u]$. Denote $\mathcal{F}_{\Omega} = \{u \in C(\Omega) : \mathcal{E}_{\Omega}[u] < \infty\}$. It is direct to check that $(\mathcal{E}_{\Omega}, \mathcal{F}_{\Omega})$ is a resistance form on Ω . Define the effective resistance metric $R_{\Omega}(x, y)$ for two points x, y in Ω with respect to \mathcal{E}_{Ω} : for $x, y \in \Omega$ and $x \neq y$,

 $R_{\Omega}(x,y)^{-1} := \inf \{ \mathcal{E}_{\Omega}[u] : u \in \mathcal{F}_{\Omega}, u(x) = 0, u(y) = 1 \}.$

Then $R_{\Omega}(\cdot, \cdot)$ is a metric on Ω . Let $\widetilde{\Omega}$ be the completion of Ω under R_{Ω} , and denote $\partial \Omega = \widetilde{\Omega} \setminus \Omega$, the resistance boundary of Ω . Recall that there is another resistance metric $R(\cdot, \cdot)$ on Ω inherited from that on K.

イロト 不得 トイヨト イヨト 二日

properties of the BGD domains

Proposition (G.-Qiu 2023)

Let $A\subset \Omega$ be a nonempty closed subset. Then there exists C>1 depending on A such that

 $R(x,y) \leq R_{\Omega}(x,y) \leq CR(x,y), \quad \forall x,y \in A.$

In addition, (A, R_{Ω}) is homeomorphic to (A, R) and (A, d).

Proposition (G.-Qiu 2024)

There exists $n_1 \ge 1$ such that for each Ω_i with $\Omega_i \cap V_1 \ne \emptyset$ and $x, y \in \Omega_i \cap V_1$, there exists a chain of n_1 -cells $\{F_{\omega^{(k)}}(K)\}_{k=1}^m$ in Ω_i connecting x and y.

- 4 同 2 4 回 2 4 U

properties of the BGD domains

Theorem (G.-Qiu 2024)

Each (Ω_i, R_{Ω_i}) is a bounded metric space.

Theorem (G.-Qiu 2024)

For i = 1, ..., P, $(\partial \Omega_i, R_{\Omega_i})$ is homeomorphic to $(\Gamma_{\infty}(i), \rho)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The flux transfer matrices

Let (\mathcal{A}, Γ) be the directed graph induced from the BGD condition. For each $\gamma \in \Gamma(i, j)$, there is a contraction map Φ_{γ} such that $\Phi_{\gamma}(\Omega_j) \subset \Omega_i$. In the following, we associate each γ with a $Q \times Q$ real matrix M_{γ} , whose (k, ℓ) -entry represents:

the flux of the unit flow on $\widetilde{\Omega}_i$ from $\partial \Omega_i$ to p_k through $\Phi_{\gamma}(p_{\ell})$ outwards from $\Phi_{\gamma}(\Omega_j)$.

For any $1 \le k \le Q$, if $p_k \notin \Omega_i$, we simply set the k-th row of M_{γ} to be zeros; otherwise, if $p_k \in \Omega_i$, let φ be the realization of $R_{\Omega_i}(\partial \Omega_i, p_k)$. Let

 $\mathbf{v}_k := R_{\Omega_i}(\partial \Omega_i, \mathbf{p}_k)\varphi,$

then v_k satisfies $(dv_k)_{p_k} = 1$. Denote the restriction of the function v_k on $\Phi_{\gamma}(\Omega_j)$ as \tilde{v}_k and define $M_{\gamma}(k, \ell) = (d\tilde{v}_k)_{\Phi_{\gamma}(p_\ell)}$.

< ロ > < 同 > < 回 > < 回 > < □ > <

The hitting probabilities

Lemma (G.-Qiu 2024)

For $1 \leq i \leq P$ and $1 \leq k \leq Q$ such that $p_k \in \Omega_i \cap V_0$, we have

$$\sum_{\ell=1}^{Q} M_{\gamma}(k,\ell) > 0, \quad \forall \gamma \in \Gamma(i),$$

and

$$\sum_{\gamma\in\Gamma(i)}\sum_{\ell=1}^{Q}M_{\gamma}(k,\ell)=1.$$

Qingsong Gu (Joint work with Hua Qiu) Boundary value problems for harmonic functions on domains in p

□ ▶ < □ ▶ < □ ▶</p>

200

The hitting probabilities

Definition

For
$$\gamma = \gamma_1 \cdots \gamma_m \in \Gamma_m(i)$$
, write $M_{\gamma} = M_{\gamma_1} \cdots M_{\gamma_m}$. We define
$$\mu_{i,k}(\partial \Omega_{\gamma}) = \mathbf{e}_k^t M_{\gamma} \mathbf{1}.$$

Note that $\mu_{i,k}(\partial \Omega_{\gamma})$ is the summation of the *k*-th row of M_{γ} .

Proposition

For $p_k \in \Omega_i \cap V_0$, $\mu_{i,k}$ extends to be a probability measure on $\partial \Omega_i$. Moreover, we have the identity

$$\mu_{i,k} = \sum_{\gamma \in \Gamma(i), 1 \le \ell \le Q} M_{\gamma}(k,\ell) \mu_{\mathcal{T}(\gamma),\ell} \circ \theta_{\gamma}^{-1}.$$

first main result

Theorem (G.-Qiu 2024)

For $p_k \in \Omega_i \cap V_0$, the probability measure $\mu_{i,k}$ in Definition 8 is the hitting probability of p_k to the R-boundary $\partial \Omega_i$. Consequently, for any $f \in C(\partial \Omega_i)$, the unique harmonic function u on Ω_i generated by f, i.e. $u|_{\partial \Omega_i} = f$, satisfies

$$u(p_k) = \int_{\partial \Omega_i} f(x) d\mu_{i,k}(x).$$

伺 ト く ヨ ト く ヨ ト

property of the hitting measures

Theorem

For each $i \in A$, assume $p, p' \in \Omega_i \cap V_0$ and let $\mu_{i,p}, \mu_{i,p'}$ be the associated probability measures. Then there exists a constant C > 0 such that for any measurable set $E \subset \partial \Omega_i$,

 $C^{-1}\mu_{i,p}(E) \leq \mu_{i,p'}(E) \leq C\mu_{i,p}(E).$

Examples

Example 1:

 $\mathcal{A} = \{1,2\}, \ \Gamma = \{\gamma_1,\gamma_2,\gamma_3\}.$

A⊒ ▶ ♦ ■ ▶

hitting probabilities

Sar

• • = • • = •

Examples

 $\mathcal{A} = \{1,2\}, \ \Gamma = \{\gamma_1,\gamma_2,\gamma_3\}.$

One may compute

$$M_{\gamma_1} = \begin{pmatrix} 1/3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ M_{\gamma_2} = \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, M_{\gamma_3} = \begin{pmatrix} 2/3 & 0 & 1/3 \\ 0 & 0 & 0 \\ 1/3 & 0 & 2/3 \end{pmatrix}.$$

The hitting probability from p_1 to the boundary $\partial \Omega$ is

$$\mu = \sum_{n=0}^{\infty} \frac{2}{3^{n+1}} \delta_{F_{3^n}(P_2)}.$$

Example 2:

Figure: a half domain in the hexagasket

The associated flux transfer matrices are

The hitting probability from p_5 (or p_6) is a twisted (1/3, 2/3)-self-similar measures on $\partial \Omega$.

Qingsong Gu (Joint work with Hua Qiu)

Boundary value problems for harmonic functions on domains in p

500

Examples

Example 2:

Directed graph $\mathcal{A} = \{1, 2\}$ and $\Gamma = \{\gamma_i\}_{i=1}^5$.

Examples

The associated flux transfer matrices are

For Ω_1 , the hitting probability from p_3 (or p_4) is the (1/2, 1/2)-self-similar measures on $\partial \Omega_1$. For Ω_2 , the hitting probability μ from p_4 to $\partial \Omega_2$ is: for any $k \ge 0$, μ restricted on the boundary of $F_{2^k 1}(\Omega_1)$ is (1/2, 1/2)-self-similar measure with total weight $\left(\frac{6t}{13+7t}\right)^k \left(\frac{13+t}{26+14t}\right)$.

伺 ト イヨト イヨト

The energy estimates

For given function f on the boundary $\partial \Omega$, let u be its harmonic extension in Ω .

Want: express the energy of u via its boundary value f.

Classical case: Let $B = \{x \in \mathbb{R}^2 : |x| < 1\}$ be the unit disc and $S = \partial B$. For $f \in L^1(S)$, let u be harmonic extension of f in B, then

$$\iint_{B} |\nabla u(x)|^{2} dx = \frac{1}{16\pi} \int_{S} \int_{S} \frac{|f(\theta) - f(\vartheta)|^{2}}{\sin^{2}(\frac{\theta - \vartheta}{2})} d\theta d\vartheta.$$

The integral on the RHS is known as the **Douglas integral**.

向下 イヨト イヨト

Sac

The energy estimates on binary trees

Random walks on binary trees .

Theorem (Kigami 2010, Theorem 5.6)

Let T be a binary tree with energy form $(\mathcal{E}, \mathcal{F})$

$$\mathcal{E}_{\mathcal{T}}[f] = \sum_{w \in \mathcal{T}} \sum_{i=1,2} \frac{1}{r_{wi}} (f(v) - f(vi))^2,$$

and $\mathcal{F} = \{f \mid \mathcal{E}_T[f] < \infty\}$. Let $\Sigma = \partial T$ be its Martin boundary. For $w \in T$, let u_w be the average of u on Σ_w w.r.t. the hitting probability ν . Then the induced form $(\mathcal{E}_{\Sigma}, \mathcal{F}_{\Sigma})$ on Σ is

$$\mathcal{E}_{\Sigma}[u] = \Sigma_{w \in T} \frac{|u_{w1} - u_{w2}|^2}{r_{w1} + R_{w1} + r_{w2} + R_{w2}},$$

with $\mathcal{F}_{\Sigma} = \{ u \mid \mathcal{E}_{\Sigma}[u] < \infty \}.$

The energy estimates on hyperbolic graphs

Random walks on (hyperbolic) augmented trees.

Theorem (Kong-Lau-Wong 2017, Theorem 1.4)

Let \mathcal{E}_X be the energy form of the λ -natural random walk on the augmented tree (X, E) of an IFS satisfying open set condition. Then the induced form on the Martin boundary $\partial X (= K)$ satisfies

$$\mathcal{E}_{\mathcal{K}}[u] \asymp \int_{\mathcal{K}} \int_{\mathcal{K}} \frac{|u(x) - u(y)|^2}{|x - y|^{\alpha + \beta}} d\nu(x) d\nu(y),$$

where the positive constant in " \asymp " is independent of u.

伺下 イヨト イヨト

The energy estimates

Lemma

Let u be a harmonic function on K. We have

$$\mathcal{E}[u] \asymp \sum_{p,q \in V_0} |u(p) - u(q)|^2 \asymp \sum_{p \in V_0} |(du)_p|^2,$$

where the positive constants in the two " \lesssim "'s are independent of u.

→ < ∃→

Sar

The energy estimates

For $f \in C(\partial \Omega)$ and $p \in V^{(\gamma)}$, we denote

$$f_{\gamma,p} = \int_{\partial\Omega_{\mathcal{T}(\gamma)}} f \circ heta_{\gamma} d\mu_{\mathcal{T}(\gamma),p}.$$

Theorem (G.-Qiu 2024)

Assume $\Omega \cap V_0 \neq \emptyset$. For $f \in C(\partial \Omega)$, let u be the harmonic extension of f in Ω . Then

$$\mathcal{E}_{\Omega}[u] \asymp \sum_{m=0}^{\infty} \sum_{\gamma \in \Gamma_m} \frac{1}{r_{\gamma}} \sum_{\xi, \eta: \ \xi^- = \eta^- = \gamma} \sum_{p \in V^{(\xi)}, \ q \in V^{(\eta)}} (f_{\xi,p} - f_{\eta,q})^2,$$

where the constant in " \asymp " does not depend on u or f.

SQA

伺 と く ヨ と く ヨ と

Thank You !!

Qingsong Gu (Joint work with Hua Qiu) Boundary value problems for harmonic functions on domains in p