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Heat Kernel: a personal journey

This is a wordy page in a (Chinese) talk for the only non-Chinese-speaking audience*

Almost all the participants of this workshop agree with the famous slogan
“The Ubiquitous Heat Kernel” by Jay Jorgensen and Serge Lang. (Me too!)

“Ubiquitous” is also justified by the fact that we come from all major cities in China:
Hangzhou, Beijing, Guangzhou, Tianjin, Chongqing · · · (+ Bielefeld from Europe!)

My first harmonic analysis training started with Prof. Jun CAO’s presentations at our
Alma Mater BNU about the Davies-Ga↵ney estimates (integrated heat semigroup
bounds) in the adapted Hardy space paper of Hofmann-Mayboroda-McIntosh.
& Prof. Liguang LIU was the Teaching Assistant of our Mathematical Analysis class.

On the table of my academic sister Li CHEN (supervised by Coulhon & Auscher),
“Heat Kernel and Analysis on Manifolds” by Prof. Grigor’yan served as Red Bible.

My first domestic conference was the one organised by Prof. Yuhua SUN in 2017.
& My first visit abroad was at Hokkaido and hosted by Aikawa and Masamune.
& My first friend in Nanjing is Prof. Xueping HUANG who influenced me very much.

This personal journey shows that I benefited a lot from the community in this room.
So I feel happy and lucky to have the opportunity to be here, right by West Lake.

*My spoken english is poor and I beg his pardon for the dichotomy: “read” slides or lake.
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Heat Kernel as a tool for PDEs: from regularity to singularity

Let L = �divAr, with A = A(x) being the (complex) elliptic coe�cient matrix, x 2 Rn.

Maximal Regularity of @tu + Lu = f : for (certain) 1 < p < 1,

kLukL2t Lpx ((0,1)⇥Rn) . kf kL2t Lpx ((0,1)⇥Rn).

The mapping f 7! Lu is a singular integral with operator-valued kernel.

Conical Maximal Regularity (CMR) of @tu + Lu = f : for (certain) 1 < p < 1,

kLukTp
2
((0,1)⇥Rn) . kf kTp

2
((0,1)⇥Rn).

Here T
p
2
is the so-called tent space of Coifman-Meyer-Stein introduced in 1983.

CMR is actually the motivating ex. of my thesis Operator Theory on Tent Spaces
(supervised by Auscher and defended in 2015), with the aim for developing
functional and harmonic analytic tools for elliptic BVP and parabolic regularity.

Both MR and CMR theories rely crucially on the heat “kernel” bounds.
See e.g. Coulhon-Lamberton, Hieber-Prüss, Auscher-Kriegler-Monniaux-Portal.

Is Heat Kernel also helpful for singularity of NLH, just for L = �� and f (u) = u
p
?

Talk today (shall end with “Mode Dynamics via Mehler Kernel”) is about the
Singularity Formation of Parabolic Equations (via Heat Kernel Estimates).

Alternative title for PDEs and Physical Modelling: Gradient profile for the
reconnection of vortex lines with the boundary in type-II superconductors.
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Quenching Problem

Let ⌦ be a bounded domain in RN with N � 1. Let � > 0. In this talk, we are
interested in the quenching problem modelled on the nonlinear heat equation on ⌦

@h
@t

= �h � F (h), (1)

where

F = F� =
1
h�

+ eF 2 C
1(R+), with R+ = (0,1).

We shall assume that eF satisfies

eF (h) = o

✓
1
h�

◆
and eF 0(h) = o

✓
1

h�+1

◆
, as h ! 0, (2)

and h is subject to initial data h0 = h(·, 0) > 0 and the Dirichlet BC h ⌘ 1 on @⌦.
Finite time quenching or extinction of a solution h to the Cauchy problem for (1) at
x0 2 ⌦, means that for some T 2 R+, h has limit value 0 at (x0,T ). We remark
that the perturbative assumption (2) is typically satisfied by

eF ⌘ 0, eF (h) = e
�h, or eF (h) = 1

h�0 for some �0 < �.

In the quenching scenario h ! 0, apart from F 2 C
1(R+) there is no need (and no

gain) to prescribe the behaviour of F (h) for h � 1. Equation (1) can also be
considered on the whole space RN , assuming decay of F and F

0 and growth of h.
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Blowup Problem

By introducing the following family of transformations

u(x , t) = u(↵, x , t) =
↵

↵
�+1

h(x , t)↵
(↵ > 0) (3)

for (1) we are then led to study the blowup problem

@u
@t

= �u � a
|ru|2

u
+ f (u),

f (u) = ↵
�

�+1 u
1+

1

↵ F (↵
1

�+1 u
� 1

↵ ) = u
p + ef (u),

(4)

where u > 0, u ⌘ 1 on @⌦, (a, p) is computed from (↵,�) by

1 < a = 1 +
1
↵

< p =
1 + ↵+ �

↵
, (5)

and ef 2 C
1(R+) satisfies

ef (u) = o(up) and ef 0(u) = o(up�1) as u ! +1. (6)

If ⌦ = RN we have certain extra assumptions on f and u.

Conversely, given 1 < a < p < 1 for (4), we recover by a = 1 + 1

↵ and p = 1+↵+�
↵

the exponent � for (1) and the transformation index ↵ in (3). If we use, instead of
�, the p and a notations to denote objects for h, we mean ↵ = 1.
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Blowup Profile

In the non-perturbed case of (4) (a = ef = 0), namely, for the equation

@u
@t

= �u + |u|p�1
u, (7)

where u(·, t) : RN ! R, p > 1 and p < N+2

N�2
if N � 3, [Merle-Zaag Duke 1997]

constructed a blowup solution with the following asymptotic behaviour
�����(T � t)

1

p�1 u(·, t)� �0

 
·� x0p

(T � t)| log(T � t)|

!�����
L1(⌦)

�! 0 as t ! T ,

(8)
is justified, where x0 is the only blowup point, T is the blowup time, and

�0(z) =
1

⇣
p � 1 + (p�1)2

4p |z |2
⌘ 1

p�1

. (9)

Let  = �0(0) = (p � 1)�
1

p�1 . The so-called final blowup profile for (7)

lim
t!T

u(x , t) ⇠

(p � 1)2

8p
|x � x0|2

| log |x � x0||

�� 1

p�1

as x ! x0,

was later derived in [Zaag AIHP 1998].
The constructive method in [Merle-Zaag] is robust and in fact has been extended by
Zaag and collaborators to a considerably large class of parabolic problems.
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Intermediate and Final Profiles

Introduce the intermediate profile

b�(z) =
✓
� + 1 +

(� + 1)2

4�
|z |2
◆ 1

�+1

, z 2 RN , (10)

with the intermediate gradient profile being

rb�(z) = � + 1
2�

z

✓
� + 1 +

(� + 1)2

4�
|z |2
◆� �

�+1

, z 2 RN . (11)

Here z will be a time-dependent rescaling of x as in (8)-(9) above.

Final profile (when ⌦ is bounded). Let x0 2 ⌦ ⇢ RN and %0 = dist (x0, @⌦). Define

H
⇤
x0(x) =


(� + 1)2

8�
|x � x0|2

| log |x � x0||

� 1

�+1

, 0 < |x � x0|  min
n
C(�),

%0
4

o
, (12)

H
⇤
x0(x) = 1, |x � x0| �

%0
2
,

with the additional requirements that

8 x 6= x0, H
⇤
x0(x) > 0 and |rH

⇤
x0(x)| > 0.
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Gradient Profile and Trajectory Space

For � = 1, the (vortex line) profile H
⇤(x) in (12) is nearly straight (up to a logarithm

log |x |). For � > 1, the profile forms a cusp at x = 0.

The gradient of H⇤ = H
⇤
0 satisfies that as x ! 0,

rH
⇤(x) ⇠ 1p

2�

x

|x |
1p

| log |x ||


(� + 1)2

8�
|x |2

| log |x ||

� 1

�+1
� 1

2

. (13)

When |x | ! 0, |rH
⇤(x)| blows up if � > 1 and extinguishes if 0 < �  1.

If ⌦ is a bounded domain in RN , then we set

H =

⇢
h 2 W

1,1(⌦) :
1
h
2 L

1(⌦)

�
. (14)
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Existence (& Stability) and Profiles

Theorem (Merle-Zaag, 1997)

Assume that ⌦ is bounded. For all x0 2 ⌦, there exists a positive h0 2 H such that for a

T > 0, equation (1) with initial data h0 has a unique solution h(·, t) on [0,T ) satisfying

lim
t!T

h(x0, t) = 0.

Furthermore, (i) (Intermediate extinction profile)

lim
t!T

�����
(T � t)

1

�+1

h(·, t) � 1
b�(zx0(·, t))

�����
L1(⌦)

= 0, (15)

where b� is given in (10) and

zx0(x , t) =
x � x0p

(T � t)| log(T � t)|
.

(ii) (Final extinction profile) h
⇤(x) := limt!T h(x , t) exists for all x 2 ⌦ and

h
⇤(x) ⇠ H

⇤
x0(x) as x ! x0,

where H
⇤
x0 is given precisely in (12).
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Refined Asymptotics and Final Gradient Profile

Theorem (H.-Zaag, 2024)

Assume that ⌦ is bounded. For all x0 2 ⌦, there exists a positive h0 2 H such that for a

T = T (h0) 2 (0, e�1), equation (1) with initial data h0 has a unique solution h(·, t) on
[0,T ) satisfying limt!T h(x0, t) = 0. Furthermore, for this h and for all t 2 [0,T ):

�����
(T � t)

1

�+1

h(·, t) � 1
b�(zx0(·, t))

�����
L1(⌦)

 C
log(| log(T � t)|)

| log(T � t)| (16)

and for each K > 0 and ⌦t,K =
n
x 2 ⌦ : |x � x0|  K

p
(T � t)| log(T � t)|

o
,

�����(T � t)�
1

�+1
+

1

2rh(·, t)� (rb�)(zx0(·, t))
| log(T � t)| 12

�����
L1(⌦t,K )

 C(K)
log(| log(T � t)|)

| log(T � t)| . (17)

Here, b� is given in (10) and zx0(x , t) is given in Merle-Zaag Theorem. Moreover:

(rh)⇤(x) := limt!T rh(x , t) exists for all x 2 ⌦\{x0}, and

(rh)⇤(x) ⇠ rH
⇤
x0(x) as x ! x0. (18)
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First Rescaling Transformation

As in Giga-Kohn and Merle-Zaag, we introduce the transform

w(y , s) = wT (y , s) = (T � t)
1

p�1 u(x , t), (19)

where (y , s) are the so-called similarity variables defined by

y =
xp

T � t
and s = � log(T � t).

Here s > 0 when T < 1. The equation satisfied by w is then

@w
@s

= �w � 1
2
y ·rw � w

p � 1
� a

|rw |2

w
+ w

p + e
� ps

p�1 ef (e
s

p�1w), (20)

where ef is in (4). Moreover, (15) for x0 = 0 is then equivalent to

lim
s!1

����w(·, s)� �

✓
·p
s

◆����
L1(RN )

= 0, (21)

where

�(z) = �a(z) =

✓
p � 1 +

(p � 1)2

4(p � a)
|z |2
◆� 1

p�1

. (22)

See [Merle-Zaag, Remark 1.1] for the formal derivation of the profile �0.
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Dynamical Formulation as lims!1 kq(s)kL1 = 0

To better describe (21), we introduce

q = w � ', '(y , s) = �

✓
yp
s

◆
+

N
2(p � a)s

, (23)

and one adds N
2(p�a)s to simplify the calculations. Observe that q satisfies

@q
@s

= LV (q) + B(q) + T (q) + R + L(q), (24)

where

LV = L+ V , L = �� 1
2
y ·r+ 1,

V = p

⇣
'p�1 � p�1

⌘
,  =

1

(p � 1)
1

p�1

,

B(q) = ('+ q)p � 'p � p'p�1
q,

T (q) = �a
|r('+ q)|2

'+ q
+ a

|r'|2

'
,

R = �@'
@s

+�'� 1
2
y ·r'� '

p � 1
� a

|r'|2

'
+ 'p,

L(q) = e
� ps

p�1 ef
⇣
e

s
p�1 ('+ q)

⌘
.

(25)

Here ef is given in (4). In B(q), T (q) and L(q), note that '+ q = w > 0.
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Linear operator L

Consider the Hilbert space with Gaussian measure

L
2

⇢ = L
2(RN , ⇢dy), where ⇢(y) =

e
� |y|2

4

(4⇡)
N
2

.

The operator L = �� 1

2
y ·r+ 1 that appears in (24) is self-adjoint in L

2

⇢.
Moreover, it has explicit spectrum as follows

Spec(L) =
⇢
�m = 1� m

2

����m 2 N
�
. (26)

Corresponding to the eigenvalue �m, we have the eigenspace Em given by

Em = Span {hm1
(y1)hm2

(y2) · · · hmN (yN)|m1 +m2 + · · ·+mN = m} , (27)

where h` is the (rescaled) Hermite polynomial in one dimension, defined by

h`(⇠) =
[`/2]X

j=0

(�1)j
`!

j!(`� 2j)!
⇠`�2j ,

and the first three such polynomials are 1, ⇠ and ⇠2 � 2.
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Inner-out decomposition

We introduce the following decomposition, for any r 2 L
1(RN):

r(y) = �(y , s)r(y) + (1� �(y , s))r(y) =: rb(y , s) + re(y , s), (28)

where

�(y , s) = �0

✓
|y |

K0

p
s

◆
, (29)

�0 being a one-dimensional cut-o↵ satisfying

supp�0 ⇢ [0, 2], 0  �0  1 and �0 ⌘ 1 on [0, 1]. (30)

We refer to (28) as inner-outer decomposition since

supp rb(s) ⇢ {|y |  2K0

p
s} and supp re(s) ⇢ {|y | � K0

p
s}. (31)

At the blowup point x = 0, (0, t) for t < T is always inside (resp. outside) the support
of the first (resp. second) function. The subscripts mean “blowup” and “exterior”.
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Spectral decomposition

Next we note that the set of eigenfunctions of L makes a basis of L2

⇢.
We write rb 2 L

2

⇢ into the following spectral decomposition

rb(y , s) = r0(s) + r1(s) · y + y
T · r2(s) · y � 2Tr(r2(s)) + r�(y , s), (32)

where
rm(s) = {P� [rb(s)]}�2NN , |�|=m , m � 0, (33)

with P� [rb] being the projection of rb on the eigenfunction h�

P� [rb(s)] =

Z

RN
rb(y , s)

h�

kh�k2L2⇢
⇢(y)dy , (34)

and
r�(y , s) = P�[rb(s)] =

X

�2NN , |�|�3

P� [rb(s)]h�(y). (35)

Throughout the talk we shall use the following expansion

r(y) = r0(s) + r1(s) · y + y
T · r2(s) · y � 2Tr(r2(s)) + r�(y , s) + re(y , s). (36)

Note that L1(RN) ⇢ L
2

⇢.
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A Tale of Three Regions

Definition. For T 2 (0, 1), t 2 (0,T ) and x 2 ⌦, let

s = � log(T � t) > 0, y =
xp

T � t
and z =

yp
s
=

xp
(T � t)| log(T � t)|

.

We define, for K0 > 0, "0 > 0 and t 2 (0,T ) given, three regions of x that cover ⌦:

R1(K0, "0, t) =

⇢
x 2 ⌦

����|x |  K0

p
(T � t)| log(T � t)|

�

= {x 2 ⌦||y |  K0

p
s} = {x 2 ⌦||z |  K0},

(37)

R2(K0, "0, t) =

⇢
x 2 ⌦

����
K0

4

p
(T � t)| log(T � t)|  |x |  "0

�

=

⇢
x 2 ⌦

����
K0

4

p
s  |y |  "0e

s
2

�
=

⇢
x 2 ⌦

����
K0

4
 |z |  "0

e
s
2

p
s

�
,

(38)

R3(K0, "0, t) =

⇢
x 2 ⌦

����|x | �
"0
4

�

=

⇢
x 2 ⌦

����|y | �
"0
4
e

s
2

�
=

⇢
x 2 ⌦

����|z | �
"0
4

e
s
2

p
s

�
.

(39)

Set Ri = Ri (K0, "0) = {(x , t) 2 ⌦⇥ (0,T )|x 2 Ri (K0, "0, t)}.
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Second Rescaling Transformation

We shall localize the study of (1.1) away from the extinction point. To this aim, introduce

kx(⇠, ⌧) =
h

⇣
x +

p
T � t(x)⇠, t(x) + (T � t(x))⌧

⌘

(T � t(x))
1

�+1

, (40)

where x 2 ⌦\{0} and t(x) < T is determined by the quasi-parabola

K0

4

p
(T � t(x))| log(T � t(x))| = |x |, (41)

which is exactly the relation giving the inner boundary of the region (38). For the sake of
convenience, we denote the radial function (abusing a little bit the notation)

✓(x) = T � t(x) = ✓(|x |), (42)

hence
t(x) ! T , ✓(x) ! 0 and | log ✓(x)| ! +1, as x ! 0.

Moreover, for t(x) � 0, by a simple calculation T < e
�1 implies that |x | is bounded, in

this sense our localization is also away from the boundary of ⌦.
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Shrinking Set, Part 1

Definition. Let T 2 (0, e�1). Fix ↵ > 3 and ↵+ 1  ↵ < 1. Let K0 > 0, "0 > 0,
A > 0, ↵0 > 0, �0 > 0, C0 > 0 and ⌘0 > 0.
(I) For all t0 2 [0,T ) and for all t 2 [t0,T ), we define

S
⇤(t0, t) = S

⇤(t0,K0, "0,A,↵0, �0,C0, ⌘0, t)

as the set of functions h 2 H, where H is defined in (14), satisfying
(i) Estimates in R1(K0, "0, t): We require, with s = � log(T � t) > 1, that

q(·, s) 2 VK0,A(s),

with q(·, s) = w(·, s)� '(·, s) defined in (23) through transforming h(·, t) := h(·) first
into u(·, t) via (3) and then into w(·, s) via (19), and VK0,A(s) is the set of functions
r 2 L

1(RN) such that r(·, s) := r(·) satisfies

(r0(s), r1(s)) 2

� A

s2
,
A

s2

�
1+N

=: QA(s), |r2(s)| 
A

2 log s
s2

,

����
r�(·, s)
1 + | · |3

����
L1

 A
↵ log s

s
5

2

, kre(·, s)kL1  A
↵ log s
s

,

(43)

where rm(s), m 2 {0, 1, 2}, r�(·, s) and re(·, s) are components of r(·, s) in the
inner-outer+spectral decompositions associated to s and K0 in defining cut-o↵ �0.
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Shrinking Set, Part 2

(ii) Estimates in R2(K0, "0, t): For all

t 2 [t0,T ) and |x | 2

K0

4

p
(T � t)| log(T � t)|, "0

�
,

and for all

|⇠|  ↵0

p
| log ✓(x)| and ⌧ 2


t0 � t(x)
T � t(x)

, 1

◆
,

we require ���kx(⇠, ⌧)� bk(⌧)
���  �0, (44)

|r⇠kx(⇠, ⌧)| 
C0p

| log ✓(x)|
. (45)

Here, kx is defined in (40) via h(·, t) := h(·),

⌧ = ⌧(x , t) =
t � t(x)
✓(x)

, ✓(x) = T � t(x),

where t(x) is given in (41) and bk solves

dbk
d⌧

= � 1
bk�

.
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Shrinking Set, Part 3

(iii) Estimates in R3(K0, "0, t): For all |x | � "0
4
, we require on h(·, t) := h(·) that

|h(x , t)� h(x , t0)|  ⌘0, (46)

|rh(x , t)�rh(x , t0)|  ⌘0. (47)

(II) For all t0 2 [0,T ), we define

S
⇤(t0) = S

⇤(t0,K0, "0,A,↵0, �0,C0, ⌘0)

=

⇢
h 2 C([t0,T );H) :

8t 2 [t0,T ), h(·, t) 2 S
⇤(t0,K0, "0,A,↵0, �0,C0, ⌘0, t)

�
.

• The involved parameters for S⇤(t0,K0, "0,A,↵0, �0,C0, ⌘0) are arranged in the order of
their appearance in this definition. It is clear that the set VK0,A(s) is shrinking to 0
(respectively, S⇤(t0, t) to the extinction profile) when s ! 1 (respectively, t ! T ).
Recall that our aim is to find a solution q of (24) with kq(s)kL1 ! 0.
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Initial Data

Let us consider initial data h(t0) in the following form: for (d0, d1) 2 R1+N , define

h(x , t0; d0, d1)

:= (T � t0)
1

�+1↵
1

�+1


�(z) + (d0 + d1 · z)�0

✓
|z |

K0/16

◆�� 1

↵
����
t=t0

�1(x , t0)

+ H
⇤(x) (1� �1(x , t0)) ,

(48)

where

�1(x , t0) = �0

 
|x |

(T � t0)
1

2 | log(T � t0)|
p
2

!
, (49)

H
⇤(x), (z ,�(z)) and �0 are recalled as before.

In particular, for z |t=t0 large, the initial data h(t0) agrees with H
⇤(x), while on

{�1(·, t0) = 1}, h(t0) and its transformation u(t0) are well-prepared around �(z)|t=t0 .
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Roadmap

The roadmap which finally leads to the proof of the Main Theorem consists of six parts.

Part I. Initialization of the Evolution Problem.

Part II. Parabolic Regularity under the Partial Trapping Assumption.

Part III. A Priori Estimates in R1, R2 and R3.

Part IV. Finite Dimensional Reduction.

Part V. Contradiction via Topological Arguments.

Part VI. Full Trapping Implies the Gradient Profile.

The complete proof (with full details) is given in [H.-Zaag J. Evol. Equ. 2024].

One technical part in above roadmap is the A Priori Estimates in R1 (“self-improving”).
It concerns the “mode dynamics” of error q in (24) for h trapped in the shrinking set.
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Mode Dynamics via Mehler Kernel (⇠ “spectrally” Davies-Ga↵ney)

Here is the statement for the negative spectrum part and the exterior part.
For vm(s), m 2 {0, 1, 2}, v�(·, s) and ve(·, s) the components of v(·, s) in the inner-outer
and spectral decompositions associated to s and K0 in defining cut-o↵ �0, satisfying

2X

m=0

|vm(�)|+
����
v�(·,�)
1 + | · |3

����
L1

+ kve(�)kL1 < 1,

one has
����
V�(·, s)
1 + | · |3

����
L1

 C
e
s��((s � �)2 + 1)

s

�
|v0(�)|+ |v1(�)|+

p
s|v2(�)|

�

+ Ce
� s��

2

����
v�(·,�)
1 + | · |3

����
L1

+ C
e
�(s��)

2

s
3

2

kve(�)kL1 ,

and

kVe(s)kL1  Ce
s��

 
2X

m=0

s
m
2 |vm(�)|+ s

3

2

����
v�(·,�)
1 + | · |3

����
L1

!
+ Ce

� s��
p kve(�)kL1 ,

where V(s) = K(s,�)v(�) and K is the fundamental solution associated to @sq = LV q.
The behavior of the kernel K follows from a perturbation method around Mehler Kernel.
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e
✓L(y , x) =

e
✓

(4⇡(1� e�✓))
N
2

exp

"
� |ye� ✓

2 � x |2

4(1� e�✓)

#
.

Thanks for your kind attention!

Enjoy your trip in Hangzhou!
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