Heat kernel and Green function on subgraphs of a complete graph

Yong Lin

Yau Mathematical Sciences Center, Tsinghua University, Beijing

Email: yonglin@tsinghua.edu.cn

This is a joint work with Sze-Man Ngai and Shing-Tung Yau

1. Definitions and notions

Let $K=K_{N}$ be a complete graph with N vertices. Let

$$
\begin{aligned}
& V_{0}:=\{1,2, \ldots, N\}, \\
& V_{1}:=\left\{i j: i, j \in V_{0}, i \neq j\right\}, \\
& V_{2}:=\left\{i j k: i, j, k \in V_{0}, i \neq j \text { and } j \neq k\right\}
\end{aligned}
$$

denote, respectively, the set of vertices, directed edges, and directed paths of length two.
For $n \geq 1$, let

$$
V_{n}:=\left\{i_{0} \cdots i_{n}: i_{0}, \ldots, i_{n} \in V_{0}, i_{j} \neq i_{j+1} \text { for all } j=0, \ldots, n-1\right\}
$$

denote the set of directed paths of length n.

Let G be a subgraph of K with vertex set $V_{0}^{G} \subseteq V_{0}$ and edge set $V_{1}^{G} \subseteq V_{1}$. For $n \geq 1$, let

$$
V_{n}^{G}:=\left\{i_{0} \cdots i_{n} \in V_{n}: i_{j} i_{j+1} \in V_{1}^{G} \text { for all } j=0, \ldots, n-1\right\}
$$

denote the set of directed paths in the graph G. We let G^{c} be the complement of G defined as follows. Let $V_{0}^{G^{c}}:=$ $V_{0} \backslash V_{0}^{G}$ and call it the set of vertices of G^{c}. Let $V_{1}^{G^{c}}:=V_{1} \backslash V_{1}^{G}$.

For each $n \geq 1$, let

$$
\begin{equation*}
V_{n}^{G^{c}}:=V_{n} \backslash V_{n}^{G} \tag{1}
\end{equation*}
$$

be the set of directed paths of length n associated with G^{c}. Note that a directed path in $V_{n}^{G^{c}}$ may contain a subpath that belong to some $V_{k}^{G}, 1 \leq k \leq n-1$.
For each $n \geq 0$, we call any real-valued function on V_{n} an n-form on V_{n}, and let Λ^{n} be the vector space of all n-forms on V_{n}. Let $\left\{e^{i_{0} \cdots i_{n}}\right\}_{i_{0} \cdots i_{n} \in V_{n}}$ be the canonical basis on Λ^{n} with $e^{i_{0} \cdots i_{n}}$ taking the value 1 at $i_{0} \cdots i_{n}$ and zero elsewhere.

Define the exterior operator $d_{n}=d_{n}^{K}: \Lambda^{n} \rightarrow \Lambda^{n+1}$ as follows. For

$$
\begin{equation*}
\omega=\sum_{i_{0} \cdots i_{n} \in V_{n}} \omega_{i_{0} \cdots i_{n}} e^{i_{0} \cdots i_{n}} \in \Lambda^{n}, \tag{2}
\end{equation*}
$$

define

$$
\left(d_{n} \omega\right)_{i_{0} \cdots i_{n+1}}:=\sum_{k=0}^{n+1}(-1)^{k} \omega_{i_{0} \cdots \hat{i}_{k} \cdots i_{n+1}},
$$

where \hat{i}_{k} means that the index i_{k} is removed. For each $n \geq 0$, we also define d_{n}^{G} and $d_{n}^{G^{c}}$ as follows. Let ω be as in (2). Then

$$
d_{n}^{G}(\omega):=\sum_{i_{0} \cdots i_{n} \in V_{n}} \omega_{i_{0} \cdots i_{n}} d_{n}^{G}\left(e^{i_{0} \cdots i_{n}}\right),
$$

where
$\left(d_{n}^{G}\left(e^{i_{0} \cdots i_{n}}\right)\right)_{j_{0} \cdots j_{n+1}}:= \begin{cases}\left(d_{n}\left(e^{i_{0} \cdots i_{n}}\right)\right)_{j_{0} \cdots j_{n+1}} & \text { if } j_{0} \cdots j_{n+1} \in V_{n+1}^{G}, \\ 0 & \text { otherwise. }\end{cases}$

Define

$$
d_{n}^{G^{c}}(\omega):=\sum_{i_{0} \cdots i_{n} \in V_{n}} \omega_{i_{0} \cdots i_{n}} d_{n}^{G^{c}}\left(e^{i_{0} \cdots i_{n}}\right),
$$

where

$$
\left(d_{n}^{G^{c}}\left(e^{i_{0} \cdots i_{n}}\right)\right)_{j_{0} \cdots j_{n+1}}:= \begin{cases}\left(d_{n}\left(e^{i_{0} \cdots i_{n}}\right)\right)_{j_{0} \cdots j_{n+1}} & \text { if } j_{0} \cdots j_{n+1} \in V_{n+1}^{G^{c}} \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

It follows directly from the above definitions that

$$
\begin{equation*}
d_{n}=d_{n}^{G}+d_{n}^{G^{c}} . \tag{5}
\end{equation*}
$$

Example 1 Consider the complete graph K_{3} with vertices $\{1,2,3\}$. Let G be the complete subgraph with the vertices $\{1,2\}$. Then

$$
\begin{aligned}
& V_{0}^{G}=\{1,2\}, \quad V_{1}^{G}=\{12,21\}, \quad V_{2}^{G}=\{121,212\}, \\
& V_{0}^{G^{c}}=\{3\}, \quad V_{1}^{G^{c}}=\{13,23,31,32\}, \\
& V_{2}^{G^{c}}=V_{2}^{K} \backslash V_{2}^{G}=\{123,131,132,213,231,232,312,313,321,323\}
\end{aligned}
$$

$$
d_{0}^{G}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad d_{0}^{G^{c}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right]
$$

Notice that $d_{0}=d_{0}^{G}+d_{0}^{G^{c}}$.

We denote 1-form on K_{N} as $\omega_{i j}$. Suppose $N>3$, then there are following 6 different heat kernels of 1 -forms on K_{N} :
(1) $H_{t}\left(\omega_{i j}, \omega_{i j}\right):=u_{1}(t)$;
(2) $H_{t}\left(\omega_{i j}, \omega_{j i}\right):=u_{2}(t)$;
(3) $H_{t}\left(\omega_{i j}, \omega_{j k}\right):=u_{3}(t)$;
(4) $H_{t}\left(\omega_{i j}, \omega_{k j}\right):=u_{4}(t)$;
(5) $H_{t}\left(\omega_{i j}, \omega_{i k}\right):=u_{5}(t)$;
(6) $H_{t}\left(\omega_{i j}, \omega_{k l}\right):=u_{6}(t)$,
where index on same function are all different.

And the heat kernel satisfies the heat equation for 1-form: where $\Delta H_{t}\left(\omega_{i j}, \cdot\right)=\sum_{\alpha \neq i, j}\left[3 H_{t}\left(\omega_{i j}, \cdot\right)-H_{t}\left(\omega_{\alpha j}, \cdot\right)-H_{t}\left(\omega_{i \alpha}, \cdot\right)\right]$, $\frac{\partial}{\partial t} H_{t}\left(\omega_{i j}, \cdot\right)=\Delta H_{t}\left(\omega_{i j}, \cdot\right)$. Then we obtain the 6 ODE with initial values

$$
H_{0}\left(\omega_{i j}, \omega_{k l}\right)=\left\{\begin{array}{cc}
1 & \text { if } \omega_{k l}=\omega_{i j} \\
0 & \text { oterwise }
\end{array}\right.
$$

By solving a system of ODEs we get

$$
\begin{aligned}
u_{1}(t)= & \frac{1}{N(N-1)} \cdot\left(e^{-(N+2) t}+(N-1) e^{-2(N+1) t}+(N-1) e^{-2 N t}\right. \\
& \left.+\left(N^{2}-3 N+1\right) e^{-3 N t}\right) \\
u_{2}(t)= & \frac{1}{N(N-1)}\left(e^{-(N+2) t}+(N-1) e^{-2(N+1) t}-(N-1) e^{-2 N t}-e^{-3 N t}\right), \\
u_{3}(t)= & \frac{1}{2 N(N-1)(N-2)} \cdot\left(2(N-2) e^{-(N+2) t}+(N-1)(N-4) e^{-2(N+1) t}\right. \\
& \left.-(N-1)(N-2) e^{-2 N t}+2 e^{-3 N t}\right) \\
u_{4}(t)= & \frac{1}{2 N(N-1)(N-2)} \cdot\left(2(N-2) e^{-(N+2) t}+(N-1)(N-4) e^{-2(N+1) t}\right. \\
& \left.+(N-1)(N-2) e^{-2 N t}-2\left(N^{2}-3 N+1\right) e^{-3 N t}\right) \\
u_{5}(t)= & \frac{1}{2 N(N-1)(N-2)} \cdot\left(2(N-2) e^{-(N+2) t}+(N-1)(N-4) e^{-2(N+1) t}\right. \\
& \left.+(N-1)(N-2) e^{-2 N t}-2\left(N^{2}-3 N+1\right) e^{-3 N t}\right) \\
u_{6}(t)= & \frac{1}{N(N-1)(N-2)} \cdot\left((N-2) e^{-(N+2) t}-2(N-1) e^{-2(N+1) t}+N e^{-3 N t}\right) .
\end{aligned}
$$

We observe that $u_{i}(t), i=1, \ldots, 6$, can be re-written as

$$
\begin{equation*}
u_{i}(t)=\frac{e^{-(N+2) t}}{N(N-1)}\left(1+\widetilde{u}_{i}(t)\right), \quad i=1, \ldots, 6 \tag{6}
\end{equation*}
$$

where $\widetilde{u}_{i}(t)$ is bounded on $[0, \infty)$ and $\widetilde{u}_{i}(t) \rightarrow 0$ as $t \rightarrow \infty$.
2. Recursive formula for heat kernels on n-forms of a subgraph

Let $\Delta_{0}:=\left(d_{0}^{K}\right)^{*} d_{0}^{K}$ be the Laplacian on 0-forms, where A^{*} denotes the transpose of a A. For $n \geq 1$, let

$$
\Delta_{n}^{K}:=\left(d_{n}^{K}\right)^{*} d_{n}^{K}+d_{n-1}^{K}\left(d_{n-1}^{K}\right)^{*}
$$

be the Laplacian on n-forms. Define Δ_{n}^{G} and $\Delta_{n}^{G^{c}}$ analogously. Proposition 2 The following relations hold.
(a) For any $n \geq 0,\left(d_{n}^{G}\right)^{*}\left(d_{n}^{G^{c}}\right)=0 \quad$ and $\quad\left(d_{n}^{G^{c}}\right)^{*}\left(d_{n}^{G}\right)=0$.
(b) $\Delta_{0}^{K}=\Delta_{0}^{G}+\Delta_{0}^{G^{c}}$.
(c) For any $n \geq 1$,

$$
\Delta_{n}^{K}=\Delta_{n}^{G}+\Delta_{n}^{G^{c}}+d_{n-1}^{G}\left(d_{n-1}^{G^{c}}\right)^{*}+d_{n-1}^{G^{c}}\left(d_{n-1}^{G}\right)^{*}
$$

To simplify notation we let

$$
L_{-1}:=0 \quad \text { and } \quad L_{n-1}:=d_{n-1}^{G}\left(d_{n-1}^{G^{c}}\right)^{*}+d_{n-1}^{G^{c}}\left(d_{n-1}^{G}\right)^{*} \quad \text { for } n \geq 1
$$

Proposition 3 Let $n \geq 0$. Then for all $x, y \in V_{n}$ and $t \geq s \geq 0$,

$$
H_{t}^{G}(x, y)=H_{t}^{K}(x, y)-\int_{0}^{t}\left(H_{t-s}^{K}\left(\Delta_{n}^{G^{c}}+L_{n-1}\right) H_{s}^{G}\right)(x, y) d s
$$

Let \mathcal{F} be the vector space of all real-valued functions on $[0, \infty) \times V_{n}^{2}$. Let $T: \mathcal{F} \rightarrow \mathcal{F}$ be a linear operator defined as

$$
\begin{equation*}
T f_{t}(x, y):=-\int_{0}^{t}\left(H_{t-s}^{K}\left(\Delta_{n}^{G^{c}}+L_{n-1}\right)\right) f_{s}(x, y) d s \tag{7}
\end{equation*}
$$

Proposition 4 Let T be defined as in (7) and assume $\|T\|<1$. Then

$$
H_{t}^{G}(x, y)=\left(I+T+T^{2}+\cdots\right) H_{t}^{K}(x, y)
$$

3. Heat kernel on 0-forms

A complete graph K_{N} has N vertices and $K(N-1) / 2$ edges. The combinatorial Laplacian has eigenvalues 0 (with multiplicity 1) and N (with multiplicity $N-1$). The normalized Laplacian has eigenvalues 0 (with multiplicity 1) and $N /(N-1)$ (with multiplicity $N-1$). Let V be the set of vertices of K_{N}. Let G be a sub-graph of K_{N} with N vertices. Let G^{c} denote the complement of G obtained by removing those edges in K_{N} that appear in G.
Recall that the combinatorial Laplacian Δ on a graph is defined as $\Delta=A-D$, where A and D are the adjacency and degree matrices respectively. Let $H_{t}^{K}(x, y), H_{t}^{G}(x, y), H_{t}^{G^{c}}(x, y)$ denote the combinatorial Laplacians corresponding to K, G, G^{c} respectively.

We use similar notation for the Laplacian Δ and the degree d_{x} of an element. Then

$$
\Delta^{K}=\Delta^{G}+\Delta^{G^{c}}
$$

Proposition 5 For all $x, y \in V$ and $t \geq 0$,

$$
H_{t}^{G}(x, y)=H_{t}^{K}(x, y)-e^{-N t} \int_{0}^{t} e^{N s} \Delta_{x}^{G^{c}} H_{s}^{G}(x, y) d s
$$

Now let \mathcal{F} be the space of all real-valued functions on $[0, \infty) \times V$. Let $T: \mathcal{F} \rightarrow \mathcal{F}$ be a linear operator defined as

$$
T u(t, x):=-e^{-N t} \int_{0}^{t} e^{N s} \Delta_{x}^{G^{c}} u(s, x) d s
$$

Proposition 6 If $t<\log 2 / N$, then $\|T\|<1$.
Under the hypothesis of Proposition 6, $\|T\|<1$ and thus by using Proposition 5,

$$
\begin{equation*}
H_{t}^{G}(x, y)=\left(I+T+T^{2}+\cdots\right) H_{t}^{K}(x, y) \tag{8}
\end{equation*}
$$

To derive a more explicit formula for $H_{t}^{G}(x, y)$, for each $y \in V$, we let $u_{y}: V \rightarrow V$ be the function defined as

$$
u_{y}^{G^{c}}(x):= \begin{cases}d_{x}^{G^{c}}, & \text { if } x=y, \tag{9}\\ 0, & \text { if } x \neq y \text { and } x \widetilde{G}^{v} y \\ -1, & \text { if } x \neq y \text { and } x \underset{G^{c}}{\sim} y,\end{cases}
$$

where $d_{x}^{G^{c}}$ is the number of neighbors of x in G^{c}.

Proposition 7 Let $u_{y}: V \rightarrow V$ be defined as in (9). Then for any $x, y \in V$, and all $t \geq 0$,

$$
\begin{aligned}
H_{t}^{G}(x, y) & =H_{t}^{K}(x, y)+t e^{-N t} u_{y}^{G^{c}}(x)+e^{-N t} \sum_{m=2}^{\infty} \frac{(-1)^{m-1} t^{m}}{m!}\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x) \\
& = \begin{cases}\frac{1}{N}-\frac{1}{N} e^{-N t}+e^{-N t} \sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^{m}}{m!}\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x), & y \neq x, \\
\frac{1}{N}+\left(1-\frac{1}{N}\right) e^{-N t}+e^{-N t} \sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^{m}}{m!}\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x), & y=x,\end{cases}
\end{aligned}
$$

where $\left(\Delta_{x}^{G^{c}}\right)^{m-1}$ denotes the $(m-1)$-fold composition of $\Delta_{x}^{G^{c}}$ (or equivalently, the $(m-1)$ th power of $\left.\Delta_{x}^{G^{c}}\right)$.

Corollary 8 The formula in Proposition 7 can be simplified as

$$
\begin{aligned}
& H_{t}^{G}(x, y) \\
& = \begin{cases}\left.H_{t}^{K}(x, y)\left(1+\frac{N t}{e^{N t}-1} u_{y}^{G^{c}}(x)+\sum_{m=2}^{\infty} \frac{N t^{m}}{m!\left(e^{N t}-1\right)}\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}\right)(x)\right), & y \neq x, \\
\left.H_{t}^{K}(x, y)\left(1+\frac{N t}{e^{N t}+N-1} u_{y}^{G^{c}}(x)+\sum_{m=2}^{\infty} \frac{N t^{m}}{m!\left(e^{N t}+N-1\right)}\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}\right)(x)\right), & y=x .\end{cases}
\end{aligned}
$$

Proposition 9 Consider the expansion in Corollary 8, the radius of convergence of each of the following series

$$
\sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^{m}}{m!}\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x)
$$

and

$$
\sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^{m-1}}{m!}\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x)
$$

is ∞.

4. Computing the coefficients in the heat kernel expansion

Let $c_{k}(x, y)$ be the coefficients of t^{k} in the expansion of $H_{t}^{G}(x, y)$, that is,

$$
H_{t}^{G}(x, y)=H_{t}^{K}(x, y)\left(c_{0}(x, y)+c_{1}(x, y) t+c_{2}(x, y) t^{2}+\cdots\right) .
$$

Then from the above results we get

$$
c_{0}(x, y):= \begin{cases}1, & \text { if } x=y \\ 1, & \text { if } x \neq y \text { and } x \underset{G}{\sim} y \\ 0, & \text { if } x \neq y \text { and } x \underset{G^{c}}{\sim} y\end{cases}
$$

To compute the other coefficients, we let $\eta^{G, G}(x, y)$ be the number of G-neighbors of x that are also G-neighbors of y, and let $\eta^{G, G^{c}}(x, y)$ be the number of G-neighbors of x that are G^{c}-neighbors of y. Similarly, we define $\eta^{G^{c}, G}(x, y)$ and $\eta^{G^{c}, G^{c}}(x, y)$. Since K is a complete graph, we have

$$
d_{x}^{G}+d_{x}^{G^{c}}=N-1
$$

Notice that $\eta^{G, G}(w, x)$ equals the number of triangles with one side being the edge connecting w and x, and the other two sides being edges in G. Hence $\sum_{w \underset{\sigma^{c}}{ } x} \eta^{G, G}(w, x)$ is the total number of triangles with one vertex at x, one side being an edge in G^{c} connecting x, and the other two sides being edges in G. Thus we let

$$
\eta_{\mathbf{\Delta}}^{G^{c} ; G, G}(x)=\sum_{w \tilde{G}^{c} x} \eta^{G, G}(w, x) .
$$

Proposition 10 For any $x, y \in V_{0}$,

$$
\begin{aligned}
& \left(d_{x}^{G^{c}}\right. \\
& \text { if } x=y \text {, } \\
& \text { if } x \neq y \text { and } x \underset{G}{\sim} y \text {, } \\
& \frac{1}{2}\left(N-d_{x}^{G^{c}}-d_{y}^{G^{c}}+\eta^{G^{c}, G^{c}}(x, y)\right), \quad \text { if } x \neq y \text { and } x \underset{G^{c}}{\sim} y \text {, } \\
& =\left\{\begin{array}{l}
N-1-d_{x}^{G}, \\
\frac{1}{2}\left(N-d_{x}^{G}-d_{y}^{G}+\eta^{G, G}(x, y)\right), \\
\frac{1}{2} \eta^{G, G}(x, y),
\end{array}\right. \\
& \text { if } x=y \text {, } \\
& \text { if } x \neq y \text { and } x \underset{G}{\sim} y \text {, } \\
& \text { if } x \neq y \text { and } x \underset{G^{c}}{\sim} y \text {. }
\end{aligned}
$$

Proposition 11 For any $x, y \in V_{0}$, the following hold.
(a) If $x=y$, we have

$$
c_{2}(x, x)=\frac{1}{2}\left(N^{2}-3 N+2+(3-2 N) d_{x}^{G}+\left(d_{x}^{G}\right)^{2}\right) .
$$

(b) If $x \neq y$ and $x \underset{G}{\sim} y$, then

$$
\begin{aligned}
& c_{2}(x, y)= \frac{1}{12}\left(N^{2}+(2-3 N) d_{x}^{G}-3 N d_{y}^{G}+2\left(d_{x}^{G}\right)^{2}+2\left(d_{y}^{G}\right)^{2}\right. \\
&+2 d_{x}^{G} d_{y}^{G}-\left(2-3 N+2 d_{x}^{G}+2 d_{y}^{G}\right) \eta^{G, G}(x, y) \\
&-2 \sum_{w \widetilde{G}^{c} x, w \neq y} \eta^{G, G}(w, y)+2 \sum_{w \widetilde{G}^{c}} \sum^{x, w \neq y, w \widetilde{G}^{y}} \\
&\left.d_{w}^{G}\right) .
\end{aligned}
$$

(c) If $x \neq y$ and $x \underset{G^{c}}{\sim} y$, then

$$
\begin{aligned}
c_{2}(x, y)= & \frac{1}{12}\left(-2 d_{y}^{G}+\left(3 N-2-2 d_{x}^{G}-2 d_{y}^{G}\right) \eta^{G, G}(x, y)\right. \\
& \left.-2 \sum_{w \widetilde{\sigma}^{c}, w \neq y} \eta^{G, G}(w, y)+2 \sum_{w \tilde{\sigma}^{x}, w \neq y, w \tilde{G}^{y}} d_{w}^{G}\right) .
\end{aligned}
$$

The coefficients $c_{3}(x, y)$ can be computed by the above Propositions. In particular,

$$
\begin{aligned}
c_{3}(x, x)= & \frac{-1}{6}\left(6-12 N+7 N^{2}-N^{3}+\left(10-12 N+3 N^{2}\right) d_{x}^{G}\right. \\
& \left.+(5-3 N)\left(d_{x}^{G}\right)^{2}+\left(d_{x}^{G}\right)^{3}+\eta_{\mathbf{\Delta}}^{G^{c} ; G, G}(x)\right)
\end{aligned}
$$

We may expand the heat kernel on K as follows:

$$
H_{t}^{K}(x, y)= \begin{cases}1-(N-1) t+\frac{1}{2} N(N-1) t^{2}-\frac{1}{6} N^{2}(N-1) t^{3} & \\ +\frac{1}{24} N^{3}(N-1) t^{4}+O\left(t^{5}\right) & x=y, \\ t-\frac{1}{2} N t^{2}+\frac{1}{6} N^{2} t^{3}-\frac{1}{24} N^{3} t^{4}+O\left(t^{5}\right), & x \neq y .\end{cases}
$$

The second method to compute the expansion of the heat kernel is using the heat equation. By Proposition 9, we can write

$$
\begin{array}{r}
H_{t}^{G}(x, y):=H_{t}^{K}(x, y)\left(a_{0}(x, y)+a_{1}(x, y) t+a_{2}(x, y) t^{2}+a_{3}(x, y) t^{3}+\right. \\
\cdots) .
\end{array}
$$

We remark that this method is not completely independent of the previous one, which guarantees that such an expansion is valid on some open interval containing 0 .

Proposition 12 For any $x, y \in V_{0}$, the coefficients $a_{i}(x, y), i=$ $0,1,2,3$ are as follows:
(a)

$$
\begin{aligned}
a_{0}(x, y) & = \begin{cases}1, & x=y \\
1, & x \neq y \text { and } x \underset{G}{\sim} y \\
0, & x \neq y \text { and } x \underset{\sigma^{c}}{\sim} y\end{cases} \\
& =c_{0}(x, y)
\end{aligned}
$$

(b)

$$
\begin{aligned}
a_{1}(x, y) & =\left\{\begin{array}{ll}
N-1-d_{x}^{G}, & x=y, \\
\frac{1}{2}\left(N-d_{x}^{G}-d_{y}^{G}+\eta^{G, G}(x, y)\right), & x \neq y \text { and } x \widetilde{G}^{\sim} y \\
\frac{1}{2} \eta^{G, G}(x, y), & x \neq y \text { and } x \widetilde{G}^{c} y
\end{array},\right. \\
& =c_{1}(x, y) .
\end{aligned}
$$

(c)

$$
\begin{aligned}
& a_{2}(x, y) \\
& \left\{\begin{array}{l}
\frac{1}{2}\left(N^{2}-3 N+2+(3-2 N) d_{x}^{G}+\left(d_{x}^{G}\right)^{2}\right), \\
\frac{1}{12}\left(N^{2}-3 N d_{x}^{G}+2\left(d_{x}^{G}\right)^{2}+(2-3 N) d_{y}^{G}+2\left(d_{y}^{G}\right)^{2}\right.
\end{array}\right. \\
& +2 d_{x}^{G} d_{y}^{G}+\left(3 N-2 d_{x}^{G}-2 d_{y}^{G}\right) \eta^{G, G}(x, y) \\
& =\left\{\begin{array}{l}
\left.-2 \sum_{w \widetilde{\sigma}^{x}, w \neq y, w \widetilde{\sigma}^{y}} d_{w}^{G}+2 \sum_{w \widetilde{\sigma}^{x}, w \neq y} \eta^{G, G}(w, y)\right), \quad \text { if } x \neq y \text { and } x \widetilde{G}^{y},
\end{array}\right. \\
& \frac{1}{12}\left(\left(3 N-2 d_{x}^{G}-2 d_{y}^{G}\right) \eta^{G, G}(x, y)\right. \\
& \left.-2 \sum_{w \widetilde{G}^{x}, w \neq y, w \widetilde{G} y} d_{w}^{G}+2 \sum_{w \widetilde{G}^{x}, w \neq y} \eta^{G, G}(w, y)\right), \quad \text { if } x \neq y \text { and } x \not{\underset{G}{G}}^{y} y \text {. }
\end{aligned}
$$

5. Heat kernel of Laplacian on 1-forms on subgraphs of a complete graph

Recall that the number of edges in K is equal to $\# V_{1}=N(N-1) / 2$. Define six $(0,1)$-matrices $A_{i}, i=1, \ldots, 6$, of order $\# V_{1} \times \# V_{1}$ as follows. The rows and columns of each A_{i} are labeled by the edges in V_{1}. For A_{1}, \ldots, A_{6}, entries equal to 1 are, respectively, $\left(w_{i j}, w_{i j}\right)$, $\left(w_{i j}, w_{j i}\right),\left(w_{i j}, w_{j k}\right),\left(w_{i j}, w_{k l}\right),\left(w_{i j}, w_{i k}\right),\left(w_{i j}, w_{k l}\right)$.

By using the matrices A_{i} and (6), we can write the heat kernel (matrix) on K as

$$
\begin{equation*}
H_{t}^{K}=\sum_{i=1}^{6} u_{i}(t) A_{i}=\sum_{i=1}^{6} \frac{e^{-(N+2) t}\left(1+\widetilde{u}_{i}(t)\right)}{N(N-1)} A_{i} \tag{10}
\end{equation*}
$$

Proposition 13 For all $x, y \in V_{1}$ and $t \geq s \geq 0$,

$$
\begin{aligned}
H_{t}^{G}(x, y) & =H_{t}^{K}(x, y)-\int_{0}^{t}\left(H_{t-s}^{K}\left(\Delta_{1}^{G^{c}}+L_{0}\right) H_{s}^{G}\right)(x, y) d s \\
& =H_{t}^{K}(x, y)-\frac{e^{-(N+2) t}}{N(N-1)} \sum_{i=1}^{6} \int_{0}^{t} e^{(N+2) s}\left(1+\widetilde{u}_{i}(t-s)\right) \\
& A_{i}\left(\Delta_{1}^{G^{c}}+L_{0}\right) H_{s}^{G}(x, y) d s
\end{aligned}
$$

where $\widetilde{u}_{i}(t)$ is bounded on $[0, \infty)$ and $\widetilde{u}_{i}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Let \mathcal{F} be the vector space of all real-valued functions on $[0, \infty) \times V_{1}$. Let $T: \mathcal{F} \rightarrow \mathcal{F}$ be a linear operator defined as

$$
\begin{aligned}
T u(t, x): & =-\int_{0}^{t}\left(H_{t-s}^{K}\left(\Delta_{1}^{G^{c}}+L_{0}\right)\right) f_{s}(x) d s \\
& =\frac{-e^{-(N+2) t}}{N(N-1)} \sum_{i=1}^{6} \int_{0}^{t} e^{(N+2) s}\left(1+\widetilde{u}_{i}(t-s)\right) \\
& A_{i}\left(\Delta_{1, z}^{G^{c}}+L_{0, z}\right) u(s, x) d s
\end{aligned}
$$

Proposition 14 There exists a constant $\gamma>0$ such that for all $t \in(0, \gamma),\|T\|<1$.

Let γ as in Proposition 14. Then by Propositions 13 and 14, for all $t \in(0, \gamma)$, we have

$$
\begin{aligned}
H_{t}^{G}(x, y) & =H_{t}^{K}(x, y)+T H_{t}^{G}(x, y) \\
& =H_{t}^{K}(x, y)+T\left(H_{t}^{K}(x, y)+T H_{t}^{G}(x, y)\right) \\
& =\cdots \\
& =\left(I+T+T^{2}+\cdots\right) H_{t}^{K}(x, y)
\end{aligned}
$$

For 1-forms I cannot obtain an analogous expression for the subgragh heat kernel as that one in Corollary 8. The main reason is that for 0 -forms, $T H_{t}^{K}(x, y)$ can be expressed explicitly as in Proposition 7. For 1 -forms the expression is not so explicit and involves an integral, e.g., for $m=1$,

$$
\begin{gathered}
T H_{t}^{K}(x, y):=\frac{-e^{-(N+2) t}}{N(N-1)} \sum_{i=1}^{6} \int_{0}^{t} e^{(N+2) s}\left(1+\widetilde{u}_{i}(t-s)\right) \\
A_{i}\left(\Delta_{1, z}^{G^{c}}+L_{0, z}\right) H_{s}^{K}(x, y) d s
\end{gathered}
$$

6. Green's function of a subgraph of a complete graph

 Let $K=(V, E)$ be a directed complete graph with N vertices, where $V=V^{K}$ is the set of all vertices and $E=E^{K}$ is the set of all edges. For any subgraph G of K, we let V^{G} and E^{G} denote the set of vertices and edges of G in K. We denote by G^{c} the complement of G in K defined as follows. Let$$
V^{G^{c}}:=V \backslash V^{G}
$$

and call it the set of all vertices of G^{c}. Also, let

$$
E^{G^{c}}:=E \backslash E^{G}
$$

We remark that G^{c} is not necessarily a graph, since an edge in $E^{G^{c}}$ does not necessarily connect two vertices in $V^{G^{c}}$. For $x, y \in G$, we denoted by $x \underset{G}{\sim} y$ is there exists an edge in E^{G} from x to y. Similarly, we define $x \underset{G^{c}}{\sim} y$. Let $x \in G$ (resp. $x \in V^{G^{c}}$), we will abuse notation slightly be writing $x \in G$ (resp. $x \in G^{c}$), and denoting the cardinality $\# V^{G}$ (resp. $\# V^{G^{c}}$) simply by $\# G$ (resp. $\left.\# G^{c}\right)$.

We describe a formula for the heat kernel of a subgraph G that is obtained in Proposition 7, we first recall that the combinatorial Laplacian Δ on a graph is defined as $\Delta=A-D$, where A is the adjacency matrix and D is the degree matrix. Let Δ^{K} and Δ^{G} be the combinatorial Laplacians on K and G respectively, and let $\Delta^{G^{c}}$ be defined by the equation

$$
\Delta^{K}=\Delta^{G}+\Delta^{G^{c}}
$$

In fact, Δ^{G} is equal to the combinatorial Laplacian on G if we regard the vertices of G^{c} as vertices in G that are not connected by any edge in G.

Denote the restriction of the Laplacian Δ^{G} to G by $\left.\Delta^{G}\right|_{G}$. We comment on the relationship between $\left.\Delta^{G}\right|_{G}$ and the Laplacian L and \mathcal{L} defined in [Chung, 1997]. The combinatorial Laplacian L on the graph G is defined as

$$
L(x, y):= \begin{cases}d_{x}^{G}, & x=y, \\ 0, & \text { otherwise }, \\ -1, & \text { if } x \neq y \text { and } x \underset{G}{\sim} y .\end{cases}
$$

Consequently,

$$
\left.\Delta^{G}\right|_{G}=-L
$$

We now describe a formula for the heat kernel of a subgraph G that is obtained by the authors in [Lin, Ngai and Yau, 2021]. For each $y \in V$, let $u_{y}^{G^{c}}: V \rightarrow V$ be a function defined as

$$
u_{y}^{G^{c}}(x):= \begin{cases}d_{x}^{G^{c}}, & \text { if } x=y, \tag{11}\\ 0, & \text { if } x \neq y \text { and } x \underset{G}{\sim} y, \\ -1, & \text { if } x \neq y \text { and } x \underset{\sigma^{c}}{\sim} y\end{cases}
$$

where $d_{x}^{G^{c}}$ is the number of neighbors of x in G^{c}.

Our goal is to compute the Green function for Δ^{G}. To this end, we first obtain the following formal series expansion for $\mathcal{G}^{G}(x, y)$, where $x, y \in G$:

$$
\begin{align*}
& \mathcal{G}^{G}(x, y) \\
& = \begin{cases}\frac{1}{N(\# G)}+\sum_{m=1}^{\infty}\left(\left(\frac{1}{\# G}-\frac{1}{N}\right) N^{m}-\left(-\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x)\right) \frac{1}{N^{m+1}}, & y \neq x \\
\left(\frac{1}{\# G}-1\right) \frac{1}{N}+\sum_{m=1}^{\infty}\left(\left(\frac{1}{\# G}-\frac{1}{N}\right) N^{m}-\left(-\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x)\right) \frac{1}{N^{m+1}}, & y=x\end{cases} \tag{12}
\end{align*}
$$

For $x, y \in G^{c}$, we define $\mathcal{G}^{G}(x, y):=0$. For convenience we assume that $\alpha:=\# V^{G}$ and $\beta:=\# V^{G^{c}}$. We obtain

$$
\mathcal{G}^{G}(x, y)= \begin{cases}\int_{0}^{\infty}\left(\frac{1}{\alpha}-H_{t}^{G}(x, y)\right) d t, & x, y \in G \\ 0, & \text { otherwise }\end{cases}
$$

We first consider subgraphs G that are complete.
Theorem 15 Let G be a complete subgraph of a complete graph K with N vertices and let $u_{y}^{G^{c}}(x)$ be defined as in (11). Then the Green function on G is given by

$$
\mathcal{G}^{G}(x, y):= \begin{cases}\frac{1}{(\# G)^{2}}, & \text { if } x, y \in G \text { and } y \neq x \\ \frac{1-\# G}{(\# G)^{2}}, & \text { if } x, y \in G \text { and } y=x \\ 0, & \text { otherwise }\end{cases}
$$

In particular, both series

$$
\begin{aligned}
\mathcal{G}^{G}(x, y)= & \sum_{m=1}^{\infty}\left[\left(\frac{1}{\# G}-\frac{1}{N}\right) N^{m}-\left(-\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x)\right] \frac{1}{N^{m+1}} \\
& +\frac{1}{N(\# G)} \quad \text { for } y \neq x,
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{G}^{G}(x, y)= & \sum_{m=1}^{\infty}\left(\left(\frac{1}{\# G}-\frac{1}{N}\right) N^{m}-\left(-\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x)\right) \frac{1}{N^{m+1}} \\
& +\left(\frac{1}{\# G}-1\right) \frac{1}{N} \quad \text { for } y=x,
\end{aligned}
$$

converge if and only if $x, y \in G$.

To case when G not complete is more complicated. We need to show that the term $(1 / \# G-1 / N) N^{m}$ in the series in (12) is canceled by a corresponding term in $\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}(x)$. Our approach is to expand $u_{y}^{G^{c}}$ in terms of the eigenfunctions of $\left(\Delta_{x}^{G^{c}}\right)^{m-1}$. We first analyze the eigenspace corresponding to the eigenvalue $-N$. It turns out that if $x, y \in G$, the quantity $\left(\Delta_{x}^{G^{c}}\right)^{m-1} u_{y}^{G^{c}}$ contains a term the $(1 / \# G-1 / N) N^{m}$, along with some higher order terms. This allows us to prove the following main result.

Theorem 16

Let G be a connected (but not necessarily complete) subgraph of a complete graph K.
(a) For all $(x, y) \in G$, both series defining the Green function in (12) converge.
(b) If $x \in G^{c}$ or $y \in G^{c}$, then $\mathcal{G}^{G}(x, y)=0$.

Thanks For Your Attention!

