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1. Definitions and notions

Let K = Ky be a complete graph with N vertices. Let

Vo :={1,2,..., N},
V1 ZZ{ijii,_jG Vo,l'#j},
Vo = {ijk : i,j,k € Vo,i # j and j # k}

denote, respectively, the set of vertices, directed edges, and directed
paths of length two.
For n > 1, let

Voi={io---iniio,...,in € Vo,ij # ijy1 forall j=0,...,n—1}

denote the set of directed paths of length n.



Let G be a subgraph of K with vertex set VOG C Vp and edge set
Vlc C Vi. Forn>1, let

VE i={ip-in € Vo iijizy1 € V€ forall j=0,...,n—1}

denote the set of directed paths in the graph G.
We let G€ be the complement of G defined as follows. Let V£ :=
Vo \ V€ and call it the set of vertices of GC. Let V&* := V;\ V.



For each n > 1, let
VnGC = Vn\ VnG (1)

be the set of directed paths of length n associated with G¢. Note
that a directed path in V¢ may contain a subpath that belong to
some VkG, 1<k<n-1.

For each n > 0, we call any real-valued function on V,, an n-form
on V,, and let A" be the vector space of all n-forms on V,. Let
{efoin}, i cv, be the canonical basis on A" with e n taking the
value 1 at ip--- i, and zero elsewhere.



Define the exterior operator d, = d,’f - A" — A"t 35 follows. For

w= Z Wig..wiy €07 € AT (2)

o in€Vp
define
n+1
. § k R
(dnw)io---i,,ﬂ - (_1) in"'ik"'in+17
k=0

where 7, means that the index iy is removed. For each n > 0, we
also define d® and d¢° as follows. Let w be as in (2).

Then o
df (W)= > wipipds (€07,

iO"'ine Vh
where

(dn(eiomin))J'O“‘jnJrl IfJO o 'jn+1 € VnG+17
0 otherwise.

(d (€°7™))jpjpsr = {
(3)



Define

G (e
d Z wlo In ID I)?

io-+in€Vn

where

(dn(eion‘i"))jomjnﬂ if jo- - Jnt1 € Ve +17
0 otherwise.

(dy (%)) jgrvjusa = {
(4)

It follows directly from the above definitions that

dp=dS +d°°. (5)



Example 1 Consider the complete graph K3 with vertices {1,2, 3}.
Let G be the complete subgraph with the vertices {1,2}. Then

Ve ={1,2}, V€ ={12,21}, V¥ = {121,212},
VE = {3}, V& ={13,23,31,32},
Vet = VR v = {123,131,132,213, 231,232,312, 313, 321, 323}.

1 1 0 0 0 0
1 -1 0 0 0 0
c |0 0 o0 e -1 0 1
=19 o o0 and - dyt =gy g
0 0 0 1 0 -1
0 0 0 0 1 1]

Notice that dy = dOG + d ‘)



We denote 1-form on Kp as wjj. Suppose N > 3, then there

are following 6 different heat kernels of 1-forms on Kpy:
(1) He(wij, wij) = ur(t);
(2) He(wij, wji) == ua(t);
(3) He(wij, wijk) == u3(t);
(4) He(wij,wj) = ua(t);
(5) Hi(wij, wik) = us(t);
(6) He(wij, wir) == ue(t),

where index on same function are all different.



And the heat kernel satisfies the heat equation for 1-form: where
AHt(wija ) = Zoé;éi,j[?’Ht(wfj’ ) - Ht(waja ) - Ht(wiom )]7
%Ht(w;j, -) = AH¢(wijj, -). Then we obtain the 6 ODE with initial
values

1 ifwy =wj
Ho(wij»WkI) = { 0 oterwise.u

By solving a system of ODEs we get



ul(t) :m . (e*(N+2)t + (N o 1)672(N+1)t + (N - 1)672,\”

+ (N> = 3N + 1)e—3’Vf),

u(t) :m (e*(NJrZ)f + (N — 1)6*2(N+1 — (N —1)e —2Nt ef3Nt)7

1
T2N(N - 1)(N —2)
(N —1)(N —2)e M ¢ 2e*3““),

1
T2N(N—1)(N—2)
+ (N = 1)(N —2)e ™ — 2(N2 — 3N + 1)e*3Nf),

1
2N(N — 1)(N — 2)
+ (N = 1)(N —2)e > = 2N = 3N + 1)e ),

1
N(N —1)(N —2)

(2(N 2)e” Nt L (N — 1)(N — 4)e2(NFDE

U3(t)

) (2(N _ 2)e—(N+2)t + (N o 1)(N o 4)e—2(N+1)t

U4(t)

(2N = 2)e M4 (v = 1) (N - 4)e N

U5(t) =

ue(t) = -((N—2) (N+2)t ~2(N - 1)e e 2Nt 4 - 3Nt)'



We observe that u;(t), i =1,...,6, can be re-written as

e—(N+2)t _
u;(t):m(l-i-u,-(t)), i=1,...,6, (6)

where T;(t) is bounded on [0,00) and T;(t) — 0 as t — oo.



2. Recursive formula for heat kernels on n-forms of a
subgraph

Let Ag := (d¥)*d{¢ be the Laplacian on 0-forms, where A* denotes
the transpose of a A. For n > 1, let

AR = (dy) dy + dala(dpts)*
be the Laplacian on n-forms. Define A¢ and A%‘ analogously.
Proposition 2 The following relations hold.
(a) Forany n>0, (d°)*(d®)=0 and  (d®)*(d®)=0
(b) AK =A§ +A§".

(c) Forany n>1,
AR = AF +AF +de(diy)* +d5 (d )"



To simplify notation we let
L 1:=0 and L, 1:=d°(d® )" +d°(d® )" forn>1.

Proposition 3 Let n > 0. Then for all x,y € V, and t > s > 0,

t
HE (x.y) = HE(x,y) — /0 (HE (AS° + Ly 1)HE) (x,y) ds.



Let F be the vector space of all real-valued functions on [0, 0c) x V2.
Let T : 7 — F be a linear operator defined as

Th(y) = - | (HE(AS 4 L) hGey)ds. (7)

Proposition 4 Let T be defined as in (7) and assume || T ||< 1.
Then
HE(x,y) =+ T+ T?+ - )HX(x,y).



3. Heat kernel on 0-forms

A complete graph Ky has N vertices and K(N — 1)/2 edges. The
combinatorial Laplacian has eigenvalues 0 (with multiplicity 1) and
N (with multiplicity N —1). The normalized Laplacian has eigenval-
ues 0 (with multiplicity 1) and N/(N —1) (with multiplicity N —1).
Let V be the set of vertices of Ky. Let G be a sub-graph of Ky
with N vertices. Let G¢ denote the complement of G obtained by
removing those edges in Kj that appear in G.

Recall that the combinatorial Laplacian A on a graph is defined as
A = A— D, where A and D are the adjacency and degree matrices
respectively. Let HX(x,y), HE (x,y), HS(x, y) denote the combi-
natorial Laplacians corresponding to K, G, G respectively.



We use similar notation for the Laplacian A and the degree d, of
an element. Then
AR = AC + AC"

Proposition 5 For all x,y € V and t > 0,

t
HE (x,y) = Hf (x,y) — eNt/ eM A HE (x,y) ds.
0



Now let F be the space of all real-valued functions on [0, 00) x V.
Let T : F — F be a linear operator defined as

t
Tu(t,x) :== —eNt/ eV A% u(s, x) ds.
0
Proposition 6 If t < log2/N, then ||T|| < 1.

Under the hypothesis of Proposition 6, || T|| < 1 and thus by
using Proposition 5,

HE(x,y)= (1 + T+ T?+-- )HK(x,y). (8)



To derive a more explicit formula for HE(x, y), for each y € V, we
let u, : V — V be the function defined as

dfc, if x =y,
ufc(X) — )0, if x# y and Xy, (9)
-1, ifx;éyanerGvcy,

where d@° is the number of neighbors of x in G°.



Proposition 7 Let uy, : V — V be defined as in (9). Then for any
x,y € V,and all t > 0,

S _1\ym—1.m e\ m— C
HE (x,y) = HEGey) + te " us () + e 32 28 (a8 16
m=2 :

m 1m

— — 1
v we M e, BT (AT) T (), y#x,

m

oo — ! <
N A= Re M e, B (AS) T (), y=x,

where (Afc)m_l denotes the (m — 1)-fold composition of AS® (or
equivalently, the (m — 1)th power of AZ®).



Corollary 8 The formula in Proposition 7 can be simplified as
HE (x,y)

HE (o) (1 g () + oy iy (A5) " uf%) (),

H:K(X,Y)(l + gy

£ () + Sia e (A5 ) (),



Proposition 9 Consider the expansion in Corollary 8, the radius of
convergence of each of the following series

>, L

m=1

m 1tm

(AS) ™ ul (x)

and

y

i 1)m ltm I(AGC)m 1uGC(X)

m=1

is 00.



4. Computing the coefficients in the heat kernel expansion

Let cx(x,y) be the coefficients of tX in the expansion of HE(x, y),
that is,

HtG(Xv.y) = HtK(X7y)(C0(X7.y) + Cl(Xay)t + C2(X7y)t2 +oe )
Then from the above results we get

1, if x=y,
alx,y) =<1 if x # y and x~y,

0, ifx;éyandxgéy.



To compute the other coefficients, we let n¢¢(x,y) be the num-
ber of G-neighbors of x that are also G-neighbors of y, and let
7% ¢°(x, y) be the number of G-neighbors of x that are G¢-neighbors
of y. Similarly, we define n¢%¢(x,y) and n°“¢“(x,y). Since K is
a complete graph, we have

dé +d =N-—1.

Notice that 7% ¢(w,x) equals the number of triangles with one
side being the edge connecting w and x, and the other two sides
being edges in G. Hence ) GG (w,x) is the total number

WNX77

of triangles with one vertex at x, one side being an edge in G¢
connecting x, and the other two sides being edges in G. Thus we

let
GCGG GG
UN Zn WX

WNX



Proposition 10 For any x,y € Vj,

dXGC, if x=y,
alx,y) = %WGC’GC(XJ’)): if x # y and XY,
TN —df" —df + 0% (x,y)), if x #y and x~y,
N—1-—4d?, if x =y,
— (N —df —df +1%°(x,y)), if x# y and X2y,
31°°¢ (%, ), if x # y and x ~ y.




Proposition 11 For any x,y € V, the following hold.
(a) If x =y, we have

1

o(x, x) = E(/v2 — 3N +2+ (3 - 2N)dS + (d7)?).

(b) If x # y and Xy, then
a(x,y) :le (N? + (2 — 3N)dS — 3NdE +2(dS)? + 2(dF)?
+2dSdy — (2 — 3N +2dS +2d7 )" (x, y)

-2 Z 7 (w,y) +2 Z ds).

WG~C><,W#y W o X wHy,wery

(c) If x# y and Xy, then

1
a(x,y) :E( - 2dyG +(3BN-2- 2dXG — 2dyG)77G’G(x,y)

-2 Z n®¢(w,y)+2 Z df)
w(r;vcx,w;éy W&x,w#y,wzy



The coefficients ¢3(x,y) can be computed by the above Proposi-
tions. In particular,

es(x, x) :%1 (6 — 12N+ 7N? — N? + (10 — 12N + 3N?)d®

(5 3N)()? + (d) + 75" ().



We may expand the heat kernel on K as follows:

1—(N—-1)t+ %N(N — 1) - %NZ(N -1t

1 3 4 5 —
t—th2+}N2t3—iN3t4+O(t5) x#y.
2 6 24 ’

The second method to compute the expansion of the heat kernel is
using the heat equation. By Proposition 9, we can write

HtG(va) = HtK(va)(aO(Xuy) + al(Xay)t+ 32(X,y)t2 + 33(Xay)t3+

We remark that this method is not completely independent of the
previous one, which guarantees that such an expansion is valid on
some open interval containing 0.



Proposition 12 For any x,y € Vg, the coefficients a;(x,y), i =
0,1,2,3 are as follows:

(a)
L, x=y,

ao(x,y) =< 1 x#yand x~y,

0, Xyéyandx(r;vcy,

= CO(X7y)'
(b)
N-1- dXG7 X=Yy,
ai(x,y) = LN —d? —df +1%C%(x,y)), x # y and x~y,
3% (x,y), x # y and x oY

= a(x,y).



(c)

aQ(va)

%(N2 —3N+2+ (3—2N)dS + (df)Q),

% N? —3Nd? +2(dS)? 4 (2 — 3N)dS + 2(dy)?
+2dSd] + (3N —2d¢ — 2dG)7]G’G(X y)
2 Y dEe2 Y ),
wrgx,w#y,wr\ay w~x w#y
1

- ((3N —2d¢ —2d7)n"%(x,y)

-2 > de+2 > m (Wy)

WX, Wy, wosy woox,wy

if x=y,

ifx;éyandx?y,

ifxyéyandx%éy.



5. Heat kernel of Laplacian on 1-forms on subgraphs of a
complete graph

Recall that the number of edges in K is equal to #V; = N(N—-1)/2.
Define six (0,1)-matrices A;, i = 1,...,6, of order # V4 x #V; as
follows. The rows and columns of each A; are labeled by the edges
in V1. For Ay, ..., A, entries equal to 1 are, respectively, (w;j, wjj),

(wij, wii), (Wi, wik), (Wi, wia), (wig, wik), (Wij, wia).-



By using the matrices A; and (6), we can write the heat kernel
(matrix) on K as

6 6 :
HE =S u(t)a =32 o ” Glt) o (10)

i=1 i=1 )

Proposition 13 For all x,y € Vj; and t > s > 0,
t
HE (x, y) = HE(x,y) - /0 (HE (A" + Lo)HE) (x,y) ds,
—(N+2)t
HK(X y e Z/ e(N+2)s 1+ U (t— S))

Ai(AS° + Lo)HE (X y)ds,

where T;(t) is bounded on [0,00) and T;(t) — 0 as t — oo.



Let F be the vector space of all real-valued functions on [0, c0) x V;.
Let T : F — F be a linear operator defined as

Tu(t,x) : = _/Ot (HE(AST + Lo))fi(x) ds

e~ (N+2)t (N+2)
= _1)2/ (L+ui(t—s))
Af(Al,z + LO,Z)U(S, X) ds.

Proposition 14 There exists a constant v > 0 such that for all
te(0,7) ITIh<1



Let v as in Proposition 14. Then by Propositions 13 and 14, for all
t € (0,7), we have
HE (x,y) = HE (x,y) + THE (x, )
= H{ (x,y) + T(H{ (x,y) + THE (x,¥))

=(I4+T+T*4--)HE(x,y).



For 1-forms | cannot obtain an analogous expression for the subgragh
heat kernel as that one in Corollary 8. The main reason is that for
0-forms, THtK(x,y) can be expressed explicitly as in Proposition 7.
For 1-forms the expression is not so explicit and involves an integral,
e.g., form=1,

K —_e—(N+2)t (N12)s
TH (x,y) : = Z/ +2) (1+T(t—s))

A; (A o+ Lo )HE (x,y) ds.



6. Green's function of a subgraph of a complete graph
Let K = (V, E) be a directed complete graph with N vertices, where
V = VK is the set of all vertices and E = EX is the set of all edges.
For any subgraph G of K, we let V¢ and EC denote the set of
vertices and edges of G in K. We denote by G¢ the complement of
G in K defined as follows. Let

Ve = wv\ve¢
and call it the set of all vertices of G€. Also, let
EC .= E\EC.

We remark that G€ is not necessarily a graph, since an edge in E®°
does not necessarily connect two vertices in V¢, For x,y € G,
we denoted by Xrgy is there exists an edge in E® from x to y.

Similarly, we define Xy Let x € G (resp. x € V©), we will

abuse notation slightly be writing x € G (resp. x € G€¢), and
denoting the cardinality #V ¢ (resp. #V¢°) simply by #G (resp.
£6°).



We describe a formula for the heat kernel of a subgraph G that
is obtained in Proposition 7, we first recall that the combinatorial
Laplacian A on a graph is defined as A = A — D, where A is the
adjacency matrix and D is the degree matrix. Let AX and A be
the combinatorial Laplacians on K and G respectively, and let A®°
be defined by the equation

AR = AC 1 AC°,

In fact, AC is equal to the combinatorial Laplacian on G if we
regard the vertices of G€ as vertices in G that are not connected
by any edge in G.



Denote the restriction of the Laplacian A® to G by AG\G. We
comment on the relationship between A®|¢c and the Laplacian L
and L defined in [Chung, 1997]. The combinatorial Laplacian L on
the graph G is defined as

de7 X=Y,
L(x,y): =<0, otherwise ,
-1, ifx;éyandxzy.

Consequently,
Al =—L.



We now describe a formula for the heat kernel of a subgraph G that
is obtained by the authors in [Lin, Ngai and Yau, 2021]. For each
y eV, let ufc : V — V be a function defined as

dc,  ifx=y,
uyGC(x) -0, if x # y and X~y (11)
-1, ifx;zéyandx(r’ycy,

where d&° is the number of neighbors of x in G©.



Our goal is to compute the Green function for A®. To this end,

we first obtain the following formal series expansion for QG(x,y),
where x,y € G:

G°(x,y)

w2 ((Fe — #)N7 = (AL () gyt y#x,

(#—1)%—1—”12::1((#—%)N’"—(—Afc)mflufc(x))ﬁ, y = x.

(12)

For x,y € G, we define G¢(x, y) := 0. For convenience we assume
that & := #VC© and 8 := #VC". We obtain

c fo (E_HG 7y))dt7 X7y€G7
G (x,y) =
0, otherwise.



We first consider subgraphs G that are complete.
Theorem 15 Let G be a complete subgraph of a complete graph

K with N vertices and let uS"(x) be defined as in (11). Then the
Green function on G is given by

(#1G)2, if x,y € G and y # x,

GC(x,y) = %, if x,y € G and y = x,

0, otherwise.

\



In particular, both series

=3[ - AN AT ]

1
N{#C) for y # x,

+

and

NgE

6°(r) =3 (g = wIN" — (A5 () s

+(ﬁ—l)lb for y = x,

converge if and only if x,y € G.

3
I



To case when G not complete is more complicated. We need to
show that the term (1/#G — 1/N)N™ in the series in (12) is
canceled by a corresponding term in (Afc)’"—luycc(x). Our
approach is to expand ufc in terms of the eigenfunctions of
(AST)™=1. We first analyze the eigenspace corresponding to the
eigenvalue —N. It turns out that if x,y € G, the quantity
(Afc)’"_lufC contains a term the (1/#G — 1/N)N™, along with
some higher order terms. This allows us to prove the following
main result.



Theorem 16

Let G be a connected (but not necessarily complete) subgraph of a
complete graph K.

(a) For all (x,y) € G, both series defining the Green function in
(12) converge.

(b) If x € G or y € G, then GC(x,y) = 0.



Thanks For Your Attention !



