Heat kernel and Green function on subgraphs of a complete graph

Yong Lin

Yau Mathematical Sciences Center, Tsinghua University, Beijing

Email: yonglin@tsinghua.edu.cn

This is a joint work with Sze-Man Ngai and Shing-Tung Yau

1. Definitions and notions

Let $K = K_N$ be a complete graph with N vertices. Let

$$V_0 := \{1, 2, \dots, N\},\$$

$$V_1 := \{ij : i, j \in V_0, i \neq j\},\$$

$$V_2 := \{ijk : i, j, k \in V_0, i \neq j \text{ and } j \neq k\}$$

denote, respectively, the set of vertices, directed edges, and directed paths of length two. For $n \ge 1$, let

$$V_n := \{i_0 \cdots i_n : i_0, \dots, i_n \in V_0, i_j \neq i_{j+1} \text{ for all } j = 0, \dots, n-1\}$$

denote the set of directed paths of length n.

Let G be a subgraph of K with vertex set $V_0^G \subseteq V_0$ and edge set $V_1^G \subseteq V_1$. For $n \ge 1$, let

$$V_n^{\mathcal{G}} := \{i_0 \cdots i_n \in V_n : i_j i_{j+1} \in V_1^{\mathcal{G}} \text{ for all } j = 0, \dots, n-1\}$$

denote the set of directed paths in the graph G. We let G^c be the complement of G defined as follows. Let $V_0^{G^c} := V_0 \setminus V_0^G$ and call it the set of vertices of G^c . Let $V_1^{G^c} := V_1 \setminus V_1^G$. For each $n \ge 1$, let

$$V_n^{G^c} := V_n \setminus V_n^G \tag{1}$$

be the set of directed paths of length *n* associated with G^c . Note that a directed path in $V_n^{G^c}$ may contain a subpath that belong to some V_k^G , $1 \le k \le n-1$. For each $n \ge 0$, we call any real-valued function on V_n an *n*-form on V_n , and let Λ^n be the vector space of all *n*-forms on V_n . Let $\{e^{i_0 \cdots i_n}\}_{i_0 \cdots i_n \in V_n}$ be the canonical basis on Λ^n with $e^{i_0 \cdots i_n}$ taking the value 1 at $i_0 \cdots i_n$ and zero elsewhere. Define the exterior operator $d_n = d_n^K : \Lambda^n \to \Lambda^{n+1}$ as follows. For

$$\omega = \sum_{i_0 \cdots i_n \in V_n} \omega_{i_0 \cdots i_n} e^{i_0 \cdots i_n} \in \Lambda^n,$$
(2)

define

$$(d_n\omega)_{i_0\cdots i_{n+1}} := \sum_{k=0}^{n+1} (-1)^k \omega_{i_0\cdots \hat{i}_k\cdots i_{n+1}},$$

where \hat{i}_k means that the index i_k is removed. For each $n \ge 0$, we also define d_n^G and $d_n^{G^c}$ as follows. Let ω be as in (2). Then

$$d_n^G(\omega) := \sum_{i_0 \cdots i_n \in V_n} \omega_{i_0 \cdots i_n} d_n^G(e^{i_0 \cdots i_n}),$$

where

$$(d_n^G(e^{i_0\cdots i_n}))_{j_0\cdots j_{n+1}} := \begin{cases} (d_n(e^{i_0\cdots i_n}))_{j_0\cdots j_{n+1}} & \text{if } j_0\cdots j_{n+1} \in V_{n+1}^G, \\ 0 & \text{otherwise.} \end{cases}$$

Define

$$d_n^{G^c}(\omega) := \sum_{i_0 \cdots i_n \in V_n} \omega_{i_0 \cdots i_n} d_n^{G^c}(e^{i_0 \cdots i_n}),$$

where

$$(d_n^{G^c}(e^{i_0\cdots i_n}))_{j_0\cdots j_{n+1}} := \begin{cases} (d_n(e^{i_0\cdots i_n}))_{j_0\cdots j_{n+1}} & \text{if } j_0\cdots j_{n+1} \in V_{n+1}^{G^c}, \\ 0 & \text{otherwise.} \end{cases}$$

$$(4)$$

It follows directly from the above definitions that

$$d_n = d_n^G + d_n^{G^c}. ag{5}$$

Example 1 Consider the complete graph K_3 with vertices $\{1, 2, 3\}$. Let *G* be the complete subgraph with the vertices $\{1, 2\}$. Then

$$\begin{split} V_0^G &= \{1,2\}, \quad V_1^G = \{12,21\}, \quad V_2^G = \{121,212\}, \\ V_0^{G^c} &= \{3\}, \quad V_1^{G^c} = \{13,23,31,32\}, \\ V_2^{G^c} &= V_2^K \setminus V_2^G = \{123,131,132,213,231,232,312,313,321,323\}. \end{split}$$

Notice that $d_0 = d_0^G + d_0^{G^c}$.

We denote 1-form on K_N as ω_{ij} . Suppose N > 3, then there are following 6 different heat kernels of 1-forms on K_N :

(1)
$$H_t(\omega_{ij}, \omega_{ij}) := u_1(t);$$

(2) $H_t(\omega_{ij}, \omega_{ji}) := u_2(t);$
(3) $H_t(\omega_{ij}, \omega_{jk}) := u_3(t);$
(4) $H_t(\omega_{ij}, \omega_{kj}) := u_4(t);$
(5) $H_t(\omega_{ij}, \omega_{ik}) := u_5(t);$
(6) $H_t(\omega_{ij}, \omega_{kl}) := u_6(t),$
where index on same function are all different.

And the heat kernel satisfies the heat equation for 1-form: where $\Delta H_t(\omega_{ij}, \cdot) = \sum_{\alpha \neq i,j} [3H_t(\omega_{ij}, \cdot) - H_t(\omega_{\alpha j}, \cdot) - H_t(\omega_{i\alpha}, \cdot)], \frac{\partial}{\partial t}H_t(\omega_{ij}, \cdot) = \Delta H_t(\omega_{ij}, \cdot).$ Then we obtain the 6 ODE with initial values

$$H_0(\omega_{ij}, \omega_{kl}) = \begin{cases} 1 & \text{if } \omega_{kl} = \omega_{ij} \\ 0 & \text{oterwise.} \end{cases}$$

By solving a system of ODEs we get

$$\begin{split} u_{1}(t) &= \frac{1}{N(N-1)} \cdot \left(e^{-(N+2)t} + (N-1)e^{-2(N+1)t} + (N-1)e^{-2Nt} \right. \\ &+ (N^{2} - 3N + 1)e^{-3Nt} \right), \\ u_{2}(t) &= \frac{1}{N(N-1)} \left(e^{-(N+2)t} + (N-1)e^{-2(N+1)t} - (N-1)e^{-2Nt} - e^{-3Nt} \right), \\ u_{3}(t) &= \frac{1}{2N(N-1)(N-2)} \cdot \left(2(N-2)e^{-(N+2)t} + (N-1)(N-4)e^{-2(N+1)t} \right. \\ &- (N-1)(N-2)e^{-2Nt} + 2e^{-3Nt} \right), \\ u_{4}(t) &= \frac{1}{2N(N-1)(N-2)} \cdot \left(2(N-2)e^{-(N+2)t} + (N-1)(N-4)e^{-2(N+1)t} \right. \\ &+ (N-1)(N-2)e^{-2Nt} - 2(N^{2} - 3N + 1)e^{-3Nt} \right), \\ u_{5}(t) &= \frac{1}{2N(N-1)(N-2)} \cdot \left(2(N-2)e^{-(N+2)t} + (N-1)(N-4)e^{-2(N+1)t} \right. \\ &+ (N-1)(N-2)e^{-2Nt} - 2(N^{2} - 3N + 1)e^{-3Nt} \right), \\ u_{6}(t) &= \frac{1}{N(N-1)(N-2)} \cdot \left((N-2)e^{-(N+2)t} - 2(N-1)e^{-2(N+1)t} + Ne^{-3Nt} \right). \end{split}$$

We observe that $u_i(t)$, $i=1,\ldots,6$, can be re-written as

$$u_i(t) = \frac{e^{-(N+2)t}}{N(N-1)} (1 + \widetilde{u}_i(t)), \qquad i = 1, \dots, 6, \tag{6}$$

where $\widetilde{u}_i(t)$ is bounded on $[0,\infty)$ and $\widetilde{u}_i(t) \to 0$ as $t \to \infty$.

2. Recursive formula for heat kernels on *n*-forms of a subgraph

Let $\Delta_0 := (d_0^K)^* d_0^K$ be the Laplacian on 0-forms, where A^* denotes the transpose of a A. For $n \ge 1$, let

$$\Delta_n^K := (d_n^K)^* d_n^K + d_{n-1}^K (d_{n-1}^K)^*$$

be the Laplacian on *n*-forms. Define Δ_n^G and $\Delta_n^{G^c}$ analogously. **Proposition 2** The following relations hold.

(a) For any $n \ge 0$, $(d_n^G)^*(d_n^{G^c}) = 0$ and $(d_n^{G^c})^*(d_n^G) = 0$. (b) $\Delta_0^K = \Delta_0^G + \Delta_0^{G^c}$. (c) For any $n \ge 1$, $\Delta_n^K = \Delta_n^G + \Delta_n^{G^c} + d_{n-1}^G(d_{n-1}^{G^c})^* + d_{n-1}^{G^c}(d_{n-1}^G)^*$. To simplify notation we let

 $L_{-1} := 0$ and $L_{n-1} := d_{n-1}^G (d_{n-1}^{G^c})^* + d_{n-1}^{G^c} (d_{n-1}^G)^*$ for $n \ge 1$. **Proposition 3** Let $n \ge 0$. Then for all $x, y \in V_n$ and $t \ge s \ge 0$,

$$H_t^G(x,y) = H_t^K(x,y) - \int_0^t \left(H_{t-s}^K(\Delta_n^{G^c} + L_{n-1}) H_s^G \right)(x,y) \, ds.$$

Let \mathcal{F} be the vector space of all real-valued functions on $[0, \infty) \times V_n^2$. Let $\mathcal{T} : \mathcal{F} \to \mathcal{F}$ be a linear operator defined as

$$Tf_t(x,y) := -\int_0^t \left(H_{t-s}^K(\Delta_n^{G^c} + L_{n-1}) \right) f_s(x,y) \, ds.$$
 (7)

Proposition 4 Let T be defined as in (7) and assume || T || < 1. Then

$$H_t^G(x,y) = (I + T + T^2 + \cdots)H_t^K(x,y).$$

3. Heat kernel on 0-forms

A complete graph K_N has N vertices and K(N-1)/2 edges. The combinatorial Laplacian has eigenvalues 0 (with multiplicity 1) and N (with multiplicity N-1). The normalized Laplacian has eigenvalues 0 (with multiplicity 1) and N/(N-1) (with multiplicity N-1). Let V be the set of vertices of K_N . Let G be a sub-graph of K_N with N vertices. Let G^c denote the complement of G obtained by removing those edges in K_N that appear in G.

Recall that the combinatorial Laplacian Δ on a graph is defined as $\Delta = A - D$, where A and D are the adjacency and degree matrices respectively. Let $H_t^K(x, y)$, $H_t^G(x, y)$, $H_t^{G^c}(x, y)$ denote the combinatorial Laplacians corresponding to K, G, G^c respectively.

We use similar notation for the Laplacian Δ and the degree d_x of an element. Then

$$\Delta^{K} = \Delta^{G} + \Delta^{G^{c}}.$$

Proposition 5 For all $x, y \in V$ and $t \ge 0$,

$$H^G_t(x,y) = H^K_t(x,y) - e^{-Nt} \int_0^t e^{Ns} \Delta^{G^c}_x H^G_s(x,y) \, ds.$$

Now let \mathcal{F} be the space of all real-valued functions on $[0,\infty) \times V$. Let $\mathcal{T} : \mathcal{F} \to \mathcal{F}$ be a linear operator defined as

$$Tu(t,x) := -e^{-Nt} \int_0^t e^{Ns} \Delta_x^{G^c} u(s,x) \, ds.$$

Proposition 6 If $t < \log 2/N$, then ||T|| < 1.

Under the hypothesis of Proposition 6, $\|\mathcal{T}\| < 1$ and thus by using Proposition 5,

$$H_t^G(x, y) = (I + T + T^2 + \dots) H_t^K(x, y).$$
(8)

To derive a more explicit formula for $H_t^G(x, y)$, for each $y \in V$, we let $u_y : V \to V$ be the function defined as

$$u_{y}^{G^{c}}(x) := \begin{cases} d_{x}^{G^{c}}, & \text{if } x = y, \\\\ 0, & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y, \\\\ -1, & \text{if } x \neq y \text{ and } x \underset{G^{c}}{\sim} y, \end{cases}$$
(9)

where $d_x^{G^c}$ is the number of neighbors of x in G^c .

Proposition 7 Let $u_y : V \to V$ be defined as in (9). Then for any $x, y \in V$, and all $t \ge 0$,

$$\begin{aligned} H_t^G(x,y) &= H_t^K(x,y) + te^{-Nt} u_y^{G^c}(x) + e^{-Nt} \sum_{m=2}^{\infty} \frac{(-1)^{m-1} t^m}{m!} \left(\Delta_x^{G^c} \right)^{m-1} u_y^{G^c}(x) \\ &= \begin{cases} \frac{1}{N} - \frac{1}{N} e^{-Nt} + e^{-Nt} \sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^m}{m!} \left(\Delta_x^{G^c} \right)^{m-1} u_y^{G^c}(x), & y \neq x, \\ \\ \frac{1}{N} + (1 - \frac{1}{N}) e^{-Nt} + e^{-Nt} \sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^m}{m!} \left(\Delta_x^{G^c} \right)^{m-1} u_y^{G^c}(x), & y = x, \end{cases} \end{aligned}$$

where $(\Delta_x^{G^c})^{m-1}$ denotes the (m-1)-fold composition of $\Delta_x^{G^c}$ (or equivalently, the (m-1)th power of $\Delta_x^{G^c}$).

Corollary 8 The formula in Proposition 7 can be simplified as $H_t^G(x, y) = \begin{cases} H_t^K(x, y) \left(1 + \frac{Nt}{e^{Nt} - 1} u_y^{G^c}(x) + \sum_{m=2}^{\infty} \frac{Nt^m}{m!(e^{Nt} - 1)} \left(\Delta_x^{G^c}\right)^{m-1} u_y^{G^c}\right)(x)\right), & y \neq x, \\ H_t^K(x, y) \left(1 + \frac{Nt}{e^{Nt} + N - 1} u_y^{G^c}(x) + \sum_{m=2}^{\infty} \frac{Nt^m}{m!(e^{Nt} + N - 1)} \left(\Delta_x^{G^c}\right)^{m-1} u_y^{G^c}\right)(x)\right), & y = x. \end{cases}$

Proposition 9 Consider the expansion in Corollary 8, the radius of convergence of each of the following series

$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^m}{m!} \left(\Delta_x^{G^c} \right)^{m-1} u_y^{G^c}(x)$$

and

$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} t^{m-1}}{m!} \left(\Delta_x^{G^c} \right)^{m-1} u_y^{G^c}(x)$$

is ∞ .

4. Computing the coefficients in the heat kernel expansion

Let $c_k(x, y)$ be the coefficients of t^k in the expansion of $H_t^G(x, y)$, that is,

$$H_t^G(x,y) = H_t^K(x,y) (c_0(x,y) + c_1(x,y)t + c_2(x,y)t^2 + \cdots).$$

Then from the above results we get

$$c_0(x,y) := \begin{cases} 1, & \text{if } x = y, \\\\ 1, & \text{if } x \neq y \text{ and } x \mathop{\sim}_G y, \\\\ 0, & \text{if } x \neq y \text{ and } x \mathop{\sim}_{G^c} y. \end{cases}$$

To compute the other coefficients, we let $\eta^{G,G}(x,y)$ be the number of *G*-neighbors of *x* that are also *G*-neighbors of *y*, and let $\eta^{G,G^c}(x,y)$ be the number of *G*-neighbors of *x* that are G^c -neighbors of *y*. Similarly, we define $\eta^{G^c,G}(x,y)$ and $\eta^{G^c,G^c}(x,y)$. Since *K* is a complete graph, we have

$$d_x^G + d_x^{G^c} = N - 1.$$

Notice that $\eta^{G,G}(w,x)$ equals the number of triangles with one side being the edge connecting w and x, and the other two sides being edges in G. Hence $\sum_{w_{C^c} x} \eta^{G,G}(w,x)$ is the total number of triangles with one vertex at x, one side being an edge in G^c connecting x, and the other two sides being edges in G. Thus we let

$$\eta^{G^c;G,G}_{\blacktriangle}(x) = \sum_{\substack{w \approx x \\ G^c}} \eta^{G,G}(w,x).$$

Proposition 10 For any $x, y \in V_0$,

$$c_{1}(x,y) = \begin{cases} d_{x}^{G^{c}}, & \text{if } x = y, \\ \frac{1}{2}\eta^{G^{c},G^{c}}(x,y)), & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y, \\ \frac{1}{2}(N - d_{x}^{G^{c}} - d_{y}^{G^{c}} + \eta^{G^{c},G^{c}}(x,y)), & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y, \end{cases}$$
$$= \begin{cases} N - 1 - d_{x}^{G}, & \text{if } x = y, \\ \frac{1}{2}(N - d_{x}^{G} - d_{y}^{G} + \eta^{G,G}(x,y)), & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y, \\ \frac{1}{2}\eta^{G,G}(x,y), & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y. \end{cases}$$

Proposition 11 For any $x, y \in V_0$, the following hold. (a) If x = y, we have

$$c_2(x,x) = \frac{1}{2} (N^2 - 3N + 2 + (3 - 2N)d_x^G + (d_x^G)^2)$$

(b) If $x \neq y$ and $x \underset{G}{\sim} y$, then

$$c_{2}(x,y) = \frac{1}{12} (N^{2} + (2 - 3N)d_{x}^{G} - 3Nd_{y}^{G} + 2(d_{x}^{G})^{2} + 2(d_{y}^{G})^{2} + 2d_{x}^{G}d_{y}^{G} - (2 - 3N + 2d_{x}^{G} + 2d_{y}^{G})\eta^{G,G}(x,y) - 2\sum_{w} \sum_{\substack{G \in X, w \neq y}} \eta^{G,G}(w,y) + 2\sum_{w} \sum_{\substack{G \in X, w \neq y, w \in Y \\ G \in X}} d_{w}^{G}).$$

(c) If $x \neq y$ and $x \underset{G^c}{\sim} y$, then

$$c_{2}(x,y) = \frac{1}{12} \left(-2d_{y}^{G} + (3N - 2 - 2d_{x}^{G} - 2d_{y}^{G})\eta^{G,G}(x,y) - 2\sum_{\substack{w \ _{G^{C}} x, w \neq y}} \eta^{G,G}(w,y) + 2\sum_{\substack{w \ _{G^{C}} x, w \neq y, w \ _{G} y}} d_{w}^{G} \right).$$

The coefficients $c_3(x, y)$ can be computed by the above Propositions. In particular,

$$c_{3}(x,x) = \frac{-1}{6} \Big(6 - 12N + 7N^{2} - N^{3} + (10 - 12N + 3N^{2}) d_{x}^{G} \\ + (5 - 3N) (d_{x}^{G})^{2} + (d_{x}^{G})^{3} + \eta_{\blacktriangle}^{G^{c};G,G}(x) \Big).$$

We may expand the heat kernel on K as follows:

$$H_t^{K}(x,y) = \begin{cases} 1 - (N-1)t + \frac{1}{2}N(N-1)t^2 - \frac{1}{6}N^2(N-1)t^3 \\ + \frac{1}{24}N^3(N-1)t^4 + O(t^5) \\ t - \frac{1}{2}Nt^2 + \frac{1}{6}N^2t^3 - \frac{1}{24}N^3t^4 + O(t^5), \quad x \neq y. \end{cases}$$

The second method to compute the expansion of the heat kernel is using the heat equation. By Proposition 9, we can write

$$H_t^G(x,y) := H_t^K(x,y) (a_0(x,y) + a_1(x,y)t + a_2(x,y)t^2 + a_3(x,y)t^3 + \cdots).$$

We remark that this method is not completely independent of the previous one, which guarantees that such an expansion is valid on some open interval containing 0.

Proposition 12 For any $x, y \in V_0$, the coefficients $a_i(x, y)$, i = 0, 1, 2, 3 are as follows: (a)

$$a_0(x,y) = \begin{cases} 1, & x = y, \\ 1, & x \neq y \text{ and } x \underset{G}{\sim} y, \\ 0, & x \neq y \text{ and } x \underset{G^c}{\sim} y, \\ = c_0(x,y). \end{cases}$$

(b)

$$a_{1}(x,y) = \begin{cases} N - 1 - d_{x}^{G}, & x = y, \\\\ \frac{1}{2} (N - d_{x}^{G} - d_{y}^{G} + \eta^{G,G}(x,y)), & x \neq y \text{ and } x \underset{G}{\sim} y, \\\\ \frac{1}{2} \eta^{G,G}(x,y), & x \neq y \text{ and } x \underset{G}{\sim} y, \\\\ = c_{1}(x,y). \end{cases}$$

$$\begin{aligned} & a_2(x,y) \\ & = \begin{cases} & \frac{1}{2} \Big(N^2 - 3N + 2 + (3 - 2N) d_x^G + (d_x^G)^2 \Big), & \text{if } x = y, \\ & \frac{1}{12} \Big(N^2 - 3N d_x^G + 2(d_x^G)^2 + (2 - 3N) d_y^G + 2(d_y^G)^2 \\ & + 2d_x^G d_y^G + (3N - 2d_x^G - 2d_y^G) \eta^{G,G}(x,y) \\ & - 2 \sum_{w_G^{\times} x, w \neq y, w_G^{\times y}} d_w^G + 2 \sum_{w_G^{\times x, w \neq y}} \eta^{G,G}(w,y) \Big), & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y, \\ & \frac{1}{12} \Big((3N - 2d_x^G - 2d_y^G) \eta^{G,G}(x,y) \\ & - 2 \sum_{w_G^{\times x, w \neq y, w_G^{\times y}}} d_w^G + 2 \sum_{w_G^{\times x, w \neq y}} \eta^{G,G}(w,y) \Big), & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y. \end{aligned}$$

5. Heat kernel of Laplacian on 1-forms on subgraphs of a complete graph

Recall that the number of edges in K is equal to $\#V_1 = N(N-1)/2$. Define six (0,1)-matrices A_i , i = 1, ..., 6, of order $\#V_1 \times \#V_1$ as follows. The rows and columns of each A_i are labeled by the edges in V_1 . For $A_1, ..., A_6$, entries equal to 1 are, respectively, (w_{ij}, w_{ij}) , (w_{ij}, w_{jk}) , (w_{ij}, w_{kl}) , (w_{ij}, w_{ik}) , (w_{ij}, w_{kl}) . By using the matrices A_i and (6), we can write the heat kernel (matrix) on K as

$$H_t^{\mathcal{K}} = \sum_{i=1}^6 u_i(t) A_i = \sum_{i=1}^6 \frac{e^{-(N+2)t} (1+\widetilde{u}_i(t))}{N(N-1)} A_i.$$
(10)

Proposition 13 For all $x, y \in V_1$ and $t \ge s \ge 0$,

$$\begin{split} H_t^G(x,y) &= H_t^K(x,y) - \int_0^t \left(H_{t-s}^K(\Delta_1^{G^c} + L_0) H_s^G \right)(x,y) \, ds, \\ &= H_t^K(x,y) - \frac{e^{-(N+2)t}}{N(N-1)} \sum_{i=1}^6 \int_0^t e^{(N+2)s} \left(1 + \widetilde{u}_i(t-s) \right) \\ &A_i(\Delta_1^{G^c} + L_0) H_s^G(x,y) \, ds, \end{split}$$

where $\widetilde{u}_i(t)$ is bounded on $[0,\infty)$ and $\widetilde{u}_i(t) \to 0$ as $t \to \infty$.

Let \mathcal{F} be the vector space of all real-valued functions on $[0,\infty) \times V_1$. Let $\mathcal{T} : \mathcal{F} \to \mathcal{F}$ be a linear operator defined as

$$Tu(t,x) := -\int_0^t \left(H_{t-s}^{\kappa} (\Delta_1^{G^c} + L_0) \right) f_s(x) \, ds$$

= $\frac{-e^{-(N+2)t}}{N(N-1)} \sum_{i=1}^6 \int_0^t e^{(N+2)s} (1 + \widetilde{u}_i(t-s))$
 $A_i(\Delta_{1,z}^{G^c} + L_{0,z}) u(s,x) \, ds.$

Proposition 14 There exists a constant $\gamma > 0$ such that for all $t \in (0, \gamma)$, ||T|| < 1.

Let γ as in Proposition 14. Then by Propositions 13 and 14, for all $t \in (0, \gamma)$, we have

$$H_t^G(x, y) = H_t^K(x, y) + TH_t^G(x, y)$$

= $H_t^K(x, y) + T(H_t^K(x, y) + TH_t^G(x, y))$
= \cdots
= $(I + T + T^2 + \cdots)H_t^K(x, y).$

For 1-forms I cannot obtain an analogous expression for the subgragh heat kernel as that one in Corollary 8. The main reason is that for 0-forms, $TH_t^K(x, y)$ can be expressed explicitly as in Proposition 7. For 1-forms the expression is not so explicit and involves an integral, e.g., for m = 1,

$$TH_t^{K}(x,y) := \frac{-e^{-(N+2)t}}{N(N-1)} \sum_{i=1}^6 \int_0^t e^{(N+2)s} (1+\widetilde{u}_i(t-s))$$
$$A_i(\Delta_{1,z}^{G^c} + L_{0,z}) H_s^{K}(x,y) \, ds.$$

6. Green's function of a subgraph of a complete graph

Let K = (V, E) be a directed complete graph with N vertices, where $V = V^{K}$ is the set of all vertices and $E = E^{K}$ is the set of all edges. For any subgraph G of K, we let V^{G} and E^{G} denote the set of vertices and edges of G in K. We denote by G^{c} the complement of G in K defined as follows. Let

$$V^{G^c} := V \setminus V^G$$

and call it the set of all vertices of G^c . Also, let

$$E^{G^c} := E \setminus E^G.$$

We remark that G^c is not necessarily a graph, since an edge in E^{G^c} does not necessarily connect two vertices in V^{G^c} . For $x, y \in G$, we denoted by $x \underset{G}{\sim} y$ is there exists an edge in E^G from x to y. Similarly, we define $x \underset{G^c}{\sim} y$. Let $x \in G$ (resp. $x \in V^{G^c}$), we will abuse notation slightly be writing $x \in G$ (resp. $x \in G^c$), and denoting the cardinality $\#V^G$ (resp. $\#V^{G^c}$) simply by #G (resp. $\#G^c$).

We describe a formula for the heat kernel of a subgraph G that is obtained in Proposition 7, we first recall that the combinatorial Laplacian Δ on a graph is defined as $\Delta = A - D$, where A is the adjacency matrix and D is the degree matrix. Let Δ^{K} and Δ^{G} be the combinatorial Laplacians on K and G respectively, and let $\Delta^{G^{c}}$ be defined by the equation

$$\Delta^{\mathsf{K}} = \Delta^{\mathsf{G}} + \Delta^{\mathsf{G}^{\mathsf{c}}}.$$

In fact, Δ^G is equal to the combinatorial Laplacian on G if we regard the vertices of G^c as vertices in G that are not connected by any edge in G.

Denote the restriction of the Laplacian Δ^G to G by $\Delta^G|_G$. We comment on the relationship between $\Delta^G|_G$ and the Laplacian L and \mathcal{L} defined in [Chung, 1997]. The *combinatorial Laplacian* L on the graph G is defined as

$$L(x, y) := \begin{cases} d_x^G, & x = y, \\\\ 0, & \text{otherwise }, \\\\ -1, & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y \end{cases}$$

Consequently,

$$\Delta^G|_G = -L.$$

We now describe a formula for the heat kernel of a subgraph G that is obtained by the authors in [Lin, Ngai and Yau, 2021]. For each $y \in V$, let $u_y^{G^c} : V \to V$ be a function defined as

$$u_{y}^{G^{c}}(x) := \begin{cases} d_{x}^{G^{c}}, & \text{if } x = y, \\\\ 0, & \text{if } x \neq y \text{ and } x \underset{G}{\sim} y, \\\\ -1, & \text{if } x \neq y \text{ and } x \underset{G^{c}}{\sim} y, \end{cases}$$
(11)

where $d_x^{G^c}$ is the number of neighbors of x in G^c .

Our goal is to compute the Green function for Δ^{G} . To this end, we first obtain the following formal series expansion for $\mathcal{G}^{G}(x, y)$, where $x, y \in G$:

$$\mathcal{G}^{G}(x,y) = \begin{cases} \frac{1}{N(\#G)} + \sum_{m=1}^{\infty} \left(\left(\frac{1}{\#G} - \frac{1}{N} \right) N^{m} - (-\Delta_{x}^{G^{c}})^{m-1} u_{y}^{G^{c}}(x) \right) \frac{1}{N^{m+1}}, & y \neq x, \\ \\ \left(\frac{1}{\#G} - 1 \right) \frac{1}{N} + \sum_{m=1}^{\infty} \left(\left(\frac{1}{\#G} - \frac{1}{N} \right) N^{m} - (-\Delta_{x}^{G^{c}})^{m-1} u_{y}^{G^{c}}(x) \right) \frac{1}{N^{m+1}}, & y = x. \end{cases}$$

$$(12)$$

For $x, y \in G^c$, we define $\mathcal{G}^G(x, y) := 0$. For convenience we assume that $\alpha := \# V^G$ and $\beta := \# V^{G^c}$. We obtain

$$\mathcal{G}^{G}(x,y) = \begin{cases} \int_{0}^{\infty} \left(\frac{1}{\alpha} - H_{t}^{G}(x,y)\right) dt, & x, y \in G, \\\\ 0, & \text{otherwise.} \end{cases}$$

We first consider subgraphs G that are complete.

Theorem 15 Let *G* be a complete subgraph of a complete graph *K* with *N* vertices and let $u_y^{G^c}(x)$ be defined as in (11). Then the Green function on *G* is given by

$$\mathcal{G}^{G}(x,y) := \begin{cases} \frac{1}{(\#G)^{2}}, & \text{ if } x, y \in G \text{ and } y \neq x, \\\\ \frac{1-\#G}{(\#G)^{2}}, & \text{ if } x, y \in G \text{ and } y = x, \\\\ 0, & \text{ otherwise.} \end{cases}$$

In particular, both series

$$\begin{aligned} \mathcal{G}^{G}(x,y) &= \sum_{m=1}^{\infty} \left[\left(\frac{1}{\#G} - \frac{1}{N} \right) N^{m} - \left(-\Delta_{x}^{G^{c}} \right)^{m-1} u_{y}^{G^{c}}(x) \right] \frac{1}{N^{m+1}} \\ &+ \frac{1}{N(\#G)} \qquad \text{for } y \neq x, \end{aligned}$$

 and

$$\begin{aligned} \mathcal{G}^{G}(x,y) &= \sum_{m=1}^{\infty} \left(\left(\frac{1}{\#G} - \frac{1}{N} \right) N^{m} - \left(-\Delta_{x}^{G^{c}} \right)^{m-1} u_{y}^{G^{c}}(x) \right) \frac{1}{N^{m+1}} \\ &+ \left(\frac{1}{\#G} - 1 \right) \frac{1}{N} \qquad \text{for } y = x, \end{aligned}$$

converge if and only if $x, y \in G$.

To case when G not complete is more complicated. We need to show that the term $(1/\#G - 1/N)N^m$ in the series in (12) is canceled by a corresponding term in $(\Delta_x^{G^c})^{m-1}u_y^{G^c}(x)$. Our approach is to expand $u_y^{G^c}$ in terms of the eigenfunctions of $(\Delta_x^{G^c})^{m-1}$. We first analyze the eigenspace corresponding to the eigenvalue -N. It turns out that if $x, y \in G$, the quantity $(\Delta_x^{G^c})^{m-1}u_y^{G^c}$ contains a term the $(1/\#G - 1/N)N^m$, along with some higher order terms. This allows us to prove the following main result.

Theorem 16

Let G be a connected (but not necessarily complete) subgraph of a complete graph K.

(a) For all (x, y) ∈ G, both series defining the Green function in (12) converge.

(b) If
$$x \in G^c$$
 or $y \in G^c$, then $\mathcal{G}^G(x, y) = 0$.

Thanks For Your Attention !