Dirichlet forms and Laplacians on fractals

Hua Qiu

Email:huaqiu@nju.edu.cn

Nanjing University

Mar. 23-24, 2024, Hangzhou

From Dirichlet form to Laplacian

• X: locally compact metric space (*fractals*, *graphs*, *manifolds*) μ : a σ -finite Borel measure on X

 $(\mathcal{E},\mathcal{F})$: a Dirichlet form on X: non-negative, densely defined, symmetric bilinear form on $L^2(X,\mu)$, closed, Markovian

Eg: Rie manifold
$$\mathcal{M}$$
, $\mathcal{E}(u,v) = \int_{\mathcal{M}} \nabla u \cdot \nabla v d\mu$, $\mathcal{F} = W^{1,2}(\mathcal{M})$ weighted graph (V,\sim) , $\mathcal{E}(u,v) = \sum_{x\sim y} c_{x,y} (u(x) - u(y)) (v(x) - v(y))$

• Δ_{μ} : a Laplacian on (X, μ) , infinitesimal generator of $(\mathcal{E}, \mathcal{F})$

For $u \in \mathcal{F}, f \in L^2(X, \mu)$: (Gauss-Green's formula)

$$\Delta_{\mu}u = f \iff \mathcal{E}(u, v) = -\int_{K} f v d\mu, \quad \forall v \in \mathcal{F}$$

Analysis on fractals, graphs, manifolds

On Riemannian manifolds with non-negative Ricci curvature:

• Gaussian estimate (*Li-Yau, 86', Acta. Math.* time
$$\approx$$
dist²): $p_t(x,y) \simeq \frac{1}{V(x,\sqrt{t})} \exp\left(-\frac{d^2(x,y)}{ct}\right), \quad \forall x,y \in \mathcal{M}, t > 0$ (HK₂)

On fractals including S. gasket and S. carpet:

 sub-Gaussian estimate (Barlow-Perkins, Barlow-Bass, 90s', time≈dist^β): $p_t(x,y) \simeq \frac{1}{\alpha/\beta} \exp\left(-\left(\frac{d^{\beta}(x,y)}{dt}\right)^{1/(\beta-1)}\right), \quad \forall x,y \in K, t > 0$ (HK_{β}) α -Hausdorff dimension; β -walk dimension, $\alpha + 1 > \beta > 2$

Analysis on fractals

K: a self-similar set

 μ : a Radon measure on K (self-similar)

• the existence and uniqueness of Δ_{μ} on K

heat kernel estimates on K

Sierpinski carpet

Analysis on fractals: graph approximations

S.carpet:

graphs fractals manifolds

History: the Sierpinski gasket SG

S. gasket: SG

$$V_0 = \{q_0, q_1, q_2\}$$

$$F_i : \mathbb{R}^2 \to \mathbb{R}^2, i = 0, 1, 2$$

$$F_i(x) = \frac{1}{2}(x - q_i) + q_i$$

$$SG = F_0SG \cup F_1SG \cup F_2SG$$
 (self-similar identity)

$$V_m = \bigcup_i F_i V_{m-1}$$

 $V_0 \subset V_1 \subset V_2 \subset \cdots$
 $u : u(C) = \frac{1}{2}$ for each m -ce

 $\mu:\mu(C)=rac{1}{3^m}$ for each m-cell C (self-similar measure)

History: SG vs I

Unit interval: I

$$V_0 = \{q_0, q_1\}$$

 $F_i : \mathbb{R} \to \mathbb{R}, i = 0, 1$
 $F_i(x) = \frac{1}{2}(x - q_i) + q_i$

$$I = F_0 I \cup F_1 I$$
 (self-similar identity)

$$V_m = \bigcup_i F_i V_{m-1}$$

$$V_0 \subset V_1 \subset V_2 \subset \cdots$$

 \mathcal{L} : $\mathcal{L}(C) = \frac{1}{2^m}$ for each *m*-cell C (Lebesgue measure)

 V_0 V_1 V_2 I

History: SG vs I

- r: the renormalization factor $r=\frac{1}{2}$ for I; $r=\frac{3}{5}$ for \mathcal{SG}
- D.F.: energy form $(\mathcal{E}, \mathcal{F})$, limit of (rescaled) graph energies $\mathcal{F} := \left\{ u \in C(\mathcal{SG} \text{ or } I) : \mathcal{E}(u) := \mathcal{E}(u, u) < \infty \right\}$ $\mathcal{E}(u,v) := \lim_{m \to \infty} r^{-m} \sum_{x \to -v} (u(x) - u(y)) (v(x) - v(y)), \quad u, v \in \mathcal{F}$
- For $I, r = \frac{1}{2}$

$$\mathcal{E}(u,v) = \lim_{m \to \infty} r^{-m} \sum_{k=1}^{2^m} \left(u(\frac{k}{2^m}) - u(\frac{k-1}{2^m}) \right) \cdot \left(v(\frac{k}{2^m}) - v(\frac{k-1}{2^m}) \right)$$

$$= \lim_{m \to \infty} \frac{1}{2^m} \sum_{k=1}^{2^m} \frac{u(\frac{k}{2^m}) - u(\frac{k-1}{2^m})}{1/2^m} \cdot \frac{v(\frac{k}{2^m}) - v(\frac{k-1}{2^m})}{1/2^m}$$

$$= \int_0^1 u'(x)v'(x)dx$$

History: the Laplacian on SG

• There is a local regular D.F. $(\mathcal{E}, \mathcal{F})$ on \mathcal{SG} , satisfying

$$\mathcal{E}(u) = \frac{5}{3} \cdot \sum_{i=1}^{3} \mathcal{E}(u \circ F_i)$$

- The B.M. on SG (Kusuoka, 87', Goldstein, 87', Barlow-Perkins, 88', PTRF)—-a probabilistic approach
- The D.F. on SG (Kigami, 89', Japan J. Appl. Math.), extended to p.c.f. sets (93', Trans. AMS)—-an analytic approach key: to find a nonlinear fixed eigenform

History: from SG to p.c.f. fractals

- On nested fractals: existence (*Lindstrøm*, 90', Mem. AMS) uniqueness (Sabot, 97', Ann. Sci. École Norm. Sup.)
- existence problem on p.c.f. sets is still open, less progress
- Heat kernel estimates: on nested fractals (Kumagai, 93', PTRF) on p.c.f. sets (Hambly-Kumagai, 99', PLMS)

From p.c.f. fractals to MS-Julia sets

Consider a rational map

$$R_{\lambda,n,m}(z)=z^n+rac{\lambda}{z^m},\quad n\geq 2, m\geq 1, \lambda\in\mathbb{C}\setminus\{0\}.$$

Call $R_{\lambda,n,m}$ a Misiurewicz-Sierpinski map if:

(MS1). each critical point of $R_{\lambda,n,m}$ is strictly preperiodic;

(MS2). each critical point of $R_{\lambda,n,m}$ is on the boundary of the immediate attracting basin of ∞ .

Critical points $C := \{z \in \mathbb{C} : R'_{\lambda,n,m}(z) = 0\}$

MS-Julia sets

• Let $K_{\lambda,n,m}$ be the Julia set of $R_{\lambda,n,m}$.

 $C = \{\text{green points}\}; \quad V_0 = \{\text{orange points}\}, \text{ forward orbits of } C$

MS-Julia sets

• The dynamics and topologies of K_{λ} (Devaney-Look, 06', Topology Proc.)

$$\#C = m + n$$
 $e^{\frac{2\pi i}{m+n}}C = C$, rotational symmetric
 C disconnects K_{λ} into $m + n$ components

 β_{λ} : boundary of the attracting basin of ∞ , a simple closed curve τ_{λ} : boundary of the trap door

$$C = \beta_{\lambda} \cap \tau_{\lambda} \Longrightarrow$$
 a "ring"-shape of K_{λ}

MS-Julia sets

- For fixed m, n, the MS λ 's are dense in boundary of the locus of connectedness of $R_{\lambda}(L. Tan, 98', Nonlinearity)$.
- For fixed m, n, infinitely many K_{λ} 's are not topologically equivalent (*Devaney-Rocha-Siegmund*, 07', *Topology Proc.*).

The Mandelbrot set of $R_{\lambda,2,2}$

From p.c.f. fractals to MS-Julia sets

K_{λ} has a p.c.f. structure

- $V_0 = \bigcup_{k=1}^{\infty} R_{\lambda}^k(C), \#V_0 < \infty$
- $\{F_i\}_{i=1}^{m+n}$, branches of R_{λ}^{-1}
- $F_iK_\lambda \cap F_iK_\lambda \subset C$ (at most one intersection point)
- $F_w K_\lambda \cap F_{w'} K_\lambda$, finite but complicated, depends on R_λ

Theorem 1. (Cao, Hassler, Q., Sandine, Strichartz, Adv. Math., 2021')

There exists a unique self-similar D.F. $(\mathcal{E}_{\lambda}, \mathcal{F}_{\lambda})$ on K_{λ} and 0 < r < 1,

$$\mathcal{E}_{\lambda}(u) = r^{-1} \cdot \sum_{i=1}^{m+n} \mathcal{E}_{\lambda}(u \circ F_i), \quad \forall u, v \in \mathcal{F}_{\lambda}.$$

In addition, $(\mathcal{E}_{\lambda}, \mathcal{F}_{\lambda})$ is rotational symmetric.

• analytic approach; r is unknown in general.

History: The Laplacian on SC

• A local regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ on the S. carpet \mathcal{SC} ,

$$\mathcal{E}(u) = r^{-1} \cdot \sum_{i=1}^{8} \mathcal{E}(u \circ F_i), \quad 0 < r < 1.$$

The existence on SC
 B.M.: Barlow-Bass, 89', 90', AIHP, etc.—-a probabilistic approach
 D.F.: Kusuoka-Zhou, 92', PTRF—-a "nearly" analytic approach

r is unknown!

History: From SC to GSCs, non-p.c.f. fractals

cell graph approximation

- The equivalence of the two approaches (Barlow-Bass-Kumagai-Teplyaev, 2010', JEMS)
- heat kernel estimates (Barlow-Bass, 92', PTRF)
- extension to higher dimensional, GSCs (Barlow-Bass, 99', Canad. J. Math.), Kusuoka-Zhou fails: from recurrent to transient.
- Γ -convergence from non-local to local (*Grigor'yan-Yang, 2019', Trans. AMS*)

Lower bound estimate of the resistances

- A key step: $R_m \gtrsim \sigma_m (\Longrightarrow R_m \gtrsim r^{-m}, r \in (0,1))$
- K.-Z. is not purely analytic: using B.-B.'s probabilistic approach, "Knight move" and "corner move" of B.M.

$$\mathcal{D}_m(f) := \sum_{w \sim v \text{ in } W_n} \Big(\int_{K_w} f - \int_{K_v} f \Big)^2, \quad m \geq 1.$$

- $\bullet \ \ \mathsf{Poincare} \ \mathsf{constants} \ \sigma_{\mathit{m}} := \sup_{n \in \mathbb{N}, w, v \in \mathit{W}_{n}, \ f} \frac{|f_{\mathit{K}_{\mathit{W}}} f f_{\mathit{K}_{\mathit{V}}} f|^{2}}{\mathcal{D}_{n+\mathit{m}, \mathit{K}_{\mathit{W}} \cup \mathit{K}_{\mathit{V}}} (f)}.$
- Resistance constants R_m : For $A, B \subset W_n$,

$$R_m(A,B) = \max \left\{ \frac{1}{\mathcal{D}_{n+m}(f)} : f|_{K_A} = 0, f|_{K_B} = 1 \right\}. \quad K_A = \bigcup_{w \in A} K_w$$

For $w \in W_n$, $n \ge 1$, write \mathcal{N}_w the n-neighborhood of w. For $m \ge 1$, $R_m = \inf_{n \in \mathbb{N}} \inf_{w \in W_n} R_m(w, \mathcal{N}_w^c)$.

From SC to USC

 \square : the unit square in \mathbb{R}^2 , \mathcal{G} : the symmetric group on \square .

Definition. (USC)

Let $\{F_i\}_{1 \le i \le N}$ be a finite set of similarities with contraction ratio k^{-1} .

(*Non-overlapping*). $F_i(\Box) \cap F_i(\Box)$ is either a line segment, a point, or \emptyset ;

(*Connectivity*). $\bigcup_{i=1}^{N} F_i(\square)$ is connected;

(Symmetry). $\bigcup_{i=1}^{N} F_i(\square)$ is invariant under \mathcal{G} ;

(Boundary included). $\partial \Box \subset \bigcup_{i=1}^{N} F_i(\Box) \subset \Box$.

Call the unique compact subset $K \subset \square$ satisfying

$$K = \bigcup_{i=1}^{N} F_i K$$

an unconstrained Sierpinski carpet (USC).

From SC to USC

Figure: Unconstrained Sierpinski carpets (USC).

Theorem 3. (Cao and Q., 2021)

For USC, the gap $R_m \gtrsim \sigma_m$ can be fulfilled in an analytic way.

Remark.

Barlow-Bass's probabilisitic argument can not be extended to USC (heavily depends on the local symmetry).

Three kinds of resistance constants.

- R_m : resistance between two "concentric balls"
- $R_m^{(S)}$: resistance between opposite sides of K (or cells)

$$R_m^{(S)} = \frac{1}{\mathcal{D}_m(h_m)}, \quad \mathcal{D}_m(h_m) = \min_{f \mid \kappa_{m,L} = 0, f \mid \kappa_{m,R} = 1} \mathcal{D}_m(f)$$

• $\tilde{R}_{m,l}$: resistance between ends of chain of cells A: a chain of *n*-cells of length *l*, with two ends *w* and *v*

Step 1. $R_m \gtrsim R_m^{(S)}$

• from h_m to g_m , with $\mathcal{D}_m(g_m) \lesssim \mathcal{D}_m(h_m) = (R_m^{(S)})^{-1}$;

0 to 1 linearly

• from g_m to f_m^w , with $(R_m(w, \mathcal{N}_w^c))^{-1} \leq \mathcal{D}_m(f_m^w) \lesssim \mathcal{D}_m(g_m) = (R_m^{(S)})^{-1}$.

So
$$R_m = \inf_{n \in \mathbb{N}, w \in W_n} R_m(w, \mathcal{N}_w^c) \gtrsim R_m^{(S)}$$
.

Step 2. $R_m^{(S)} \gtrsim \tilde{R}_{m,l}$

$$\bullet$$
 $R_m^{(S)} \geq \frac{1}{4l} \cdot \tilde{R}_{m,l}$.

- series rule of resistances;
- for l = 2, 3, it is easy; for large l, using induction and symmetry.

Step 3. $R_{m,l} \geq \sigma_m$

- For large m, there exists $m' \ll m$ independent of m, such that $R_{m-m',l} \gtrsim \sigma_m$, where l is bounded above depending only on m'.
- recall $\sigma_m = \sup_{n \in \mathbb{N}, w, v \in W_n, f} \frac{|\int_{K_w} f \int_{K_v} f|^2}{\overline{\mathcal{D}_{n+m}}_{K_w, 1:K_w}(f)}$;
- choose $n, w \stackrel{n}{\sim} v, g'$ with $\mathcal{D}_{n+m,K_w \cap K_v}(g') = 1$ and $f_{K_w} g' f_{K_v} g' = \sqrt{\sigma_m}$;
- look at $g = g' \circ F_w$, may assume $\oint_{\mathcal{K}} g = \frac{1}{2} \sqrt{\sigma_m}$, $\mathcal{D}_m(g) \leq \frac{1}{2}$;
- find two (n m')-cells arranged in a line with difference of g between ends comparable with $\sqrt{\sigma_m}$. $\Longrightarrow \tilde{R}_{m-m',l} \gtrsim \frac{|g(u)-g(v)|^2}{\mathcal{D}_m(a)} \gtrsim \sigma_m$.

m large enough, m' independent of m

- Step 1: $R_m \geq R_m^{(S)}$
- Step 2: $R_m^{(S)} \geq \tilde{R}_{m,l}$
- Step 3: $\tilde{R}_{m-m'}$ $1 \geq \sigma_m$
- Observation: $\sigma_m \simeq \sigma_{m-m'}$

Combing Steps 1-3, we have $R_{m-m'} \gtrsim \sigma_m$, which gives $R_m \gtrsim \sigma_m$.

From SC to USC

Let K be a USC and μ be the normalized Hausdorff measure on K.

Theorem 4. (S. Cao and Q., 2021)

There exists a unique local regular symmetric self-similar D.F. $(\mathcal{E}, \mathcal{F})$ on $L^2(K, \mu)$, satisfying

$$\mathcal{E}(u) = r^{-1} \cdot \sum_{i=1}^{8} \mathcal{E}(u \circ F_i), \quad 0 < r < 1.$$

Also, the sub-Gaussian HK estimate holds.

From SC to USC

Let K, K_n , $n \ge 1$ be USC with fixed k, (X, \mathbb{P}_x) , $(X^{(n)}, \mathbb{P}_x^{(n)})$, n > 1 be the associated B M

Theorem 5. (S. Cao and Q., 2021)

 $\mathbb{P}_{x_n}^{(n)}((X_t^{(n)})_{t>0}\in\cdot)\Rightarrow\mathbb{P}_x((X_t)_{t>0}\in\cdot),\,\forall x_n\to x\Longleftrightarrow$ the geodesic metrics $d_{G,n}$ on K_n , n > 1 are equicontinuous.

 $(K_n, R_n) \to (K, R)$ in the sense of Gromov-Hausdorff convergence

Figure: The USC K(z).

From USC to LSC

Sierpinski carpet like fractals (LSC)

Definition. (LSC)

Let $N \geq 8$, and for $1 \leq i \leq N$, choose $F_i : \square \to \square$ of the form

$$F_i(x) = \rho_i x + c_i.$$

The unique compact K satisfying $K = \bigcup_{i=1}^{N} F_i K$ is a Sierpinski carpet like fractal (LSC) if (Non-overlapping), (Connectivity), (Symmetry), (Boundary included) are satisfied.

From USC to LSC

Question.

Does there always exist a D.F. with sub-Gaussian HK estimate on a LSC? If not, when?

Theorem 6. (Cao and Q., 2023, PAMS)

There does not exist a D.F. with sub-Gaussian HK estimate on the \mathcal{LSC} pictured above.

Partially answer to when: there exist such D.F.s on USC and uncountably many hollow LSC.

From USC to LSC

Polygon carpets (Cao, Q., Wang, 2022)
 —-analytic approach extending 2d-USC

Higher dimensional USC (Cao, Q., 2023)
 —-a probabilistic approach using coupling

Thank you!