Mandelbrot Cascades

Critical moments,Rajchman measures and Sobolev smoothness

Yanqi Qiu
joint with Xinxin Chen, Yong Han and Zipeng Wang

March 23, 2024

Mandelbrot's classical setting

- Let $b \in \mathbb{N}$, for $n=1,2, \ldots, k \in\{1,2, \ldots, n\}$, define intervals:

$$
I\left(j_{1}, j_{2}, \ldots, j_{n}\right)=\left[\sum_{k=1}^{n} \frac{j_{k}}{b^{k}}, \sum_{k=1}^{n} \frac{j_{k}}{b^{k}}+b^{-n}\right) \subset[0,1]
$$

with $j_{i} \in\{0,1, \ldots, b-1\}$.

- W is a positive random variable (r.v.) with $\mathbb{E}(W)=1$.
- $W\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ be independent copies of W.
- Let μ_{n} be the measure defined on $[0,1]$, whose density on the interval $I\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is given by

$$
W\left(j_{1}\right) W\left(j_{1}, j_{2}\right) \ldots W\left(j_{1}, j_{2}, \ldots, j_{n}\right)
$$

Mandelbrot's classical setting

- The total mass of μ_{n} is given by

$$
Y_{n}=\left\|\mu_{n}\right\|=b^{-n} \sum_{j_{1}, j_{2}, \ldots, j_{n}} W\left(j_{1}\right) W\left(j_{1}, j_{2}\right) \ldots W\left(j_{1}, j_{2}, \ldots, j_{n}\right) .
$$

- This is a nonnegative martingale $\left(\mathbb{E}\left(Y_{n}\right)=1\right)$. It converges a.s. to a r.v. Y_{∞} such that $\mathbb{E}\left(Y_{\infty}\right) \leq 1$.
- For any b-adic intervals $I, \mu_{n}(I)$ is a martingale with expectation $|I|$ which converges a.s. to a limit $\mu(I)$. Hence μ_{n} tends weakly a.s. to a measure μ of total mass Y_{∞}.

Mandelbrot's classical setting

- Y_{n} satisfies the following equation

$$
Y_{n}=b^{-1} \sum_{j=0}^{b-1} W(j) Y_{n-1}(j)
$$

where $W(j)$ and $Y_{n-1}(j)$ are all independent, and the $Y_{n-1}(j)$ have the same distribution as Y_{n-1}.

- Informally, let $n \rightarrow \infty$, one gets the functional equation

$$
\begin{equation*}
\mathrm{Z}=b^{-1} \sum_{j=0}^{b-1} W_{j} Z_{j} \tag{1}
\end{equation*}
$$

where the r.v.'s W_{j} and Z_{j} are all independent, the W_{j} having the same distribution as W, and the Z_{j} having the same distribution as Z.

Basic Questions

(1) (non-degeneracy) When is Y_{∞} non-trivial?
(2) When $Y_{n} \rightarrow Y_{\infty}$ in L^{p}-norm?

Theorem (J.P.Kahane-J.Peyrière 1976)
Any one of the following 4 conditions is the necessary and sufficient condition for the non-degeneracy:
(1) $\mathbb{E}\left(Y_{\infty}\right)=1$,
(2) $\mathbb{E}\left(Y_{\infty}\right)>0$,
(3) Equation (1) has a solution Z such that $\mathbb{E}(Z)=1$,
(4) $\mathbb{E}(W \log W)<\log b$.

Theorem (Condition for the existence of finite moments)
Let $p>1$. One has $0<\mathbb{E}\left(Y_{\infty}^{p}\right)<\infty$ if and only if $\mathbb{E}\left(W^{p}\right)<b^{p-1}$.

Further Questions
(1) If $\mathbb{E}\left(W^{p}\right)<b^{p-1}$, what's the convergence rate of $\mathbb{E}\left(Y_{n}^{p}\right)$?
(2) If $\mathbb{E}\left(W^{p}\right) \geq b^{p-1}$, what's the divergence rate of $\mathbb{E}\left(Y_{n}^{p}\right)$?

We will answer these questions after a while.

History

- Mandelbrot's cascade measures
- Kahane, Peyriere 1985,1976
- Aihua Fan, Barrel ...
- Kahane's GMC: Kahane, Sheffield, Remi Rhode, etc

A general framework (the tree is not necessarily homogeneous)

$$
Z_{N}:=\Sigma_{v \in T_{N}} a(v) \Pi_{u \preceq v} X(u)=a(\rho)+\sum_{m=1}^{N} \Sigma_{v \in S_{m}} a(v) \Pi_{u \preceq v} X(u) .
$$

- \mathcal{T} is a rooted (denote by ρ the root) infinite tree with the natural partial order \succeq and the graph distance $d(\cdot, \cdot)$.
- For $n \geq 0$, define

$$
S_{n}:=\{v \in \mathcal{T}: d(v, \rho)=n\}, \quad T_{n}:=\{v \in \mathcal{T}: d(v, \rho) \leq n\} .
$$

Let $X(\rho)=1$. For any positive integer N, define

$$
Z_{N}:=\sum_{v \in T_{N}} a(v) \prod_{u \preceq v} X(u)=a(\rho)+\sum_{m=1}^{N} \sum_{v \in S_{m}} a(v) \prod_{u \preceq v} X(u),
$$

$X(u)$ for $u \neq \rho$ are i.i.d non-negative r.v.'s and $a(v) \geq 0$ are considered as weights.

Remark: Here no assumption $\mathbb{E}(X(u))=1$.

A natural question

Question
When is $\left(Z_{N}\right)_{N=1,2,3, \ldots}$ uniformly bounded in L^{p} for $p>1$?

Theorem (Han-Q.-Wang)

For $p \geq 2$ and positive r.v. X with $\mathbb{E}\left[X^{p}\right]<\infty$,

$$
\begin{aligned}
& \left\|Z_{N}\right\|_{p}^{p} \asymp\left\|\tilde{Z}_{N-1}\right\|_{\frac{p}{2}}^{\frac{p}{2}} \asymp\left(a(\rho)+\sum_{n=1}^{N} \sum_{v \in S_{n}} a(v)(\mathbb{E}[X])^{n}\right)^{p} \\
& +\sum_{v \in S_{1}}\left(\sum_{n=1}^{N}(\mathbb{E}[X])^{n-1} \sum_{w \in S_{n}, w \succeq v} a(w)\right)^{p} \operatorname{Var}(X)^{\frac{p}{2}} \\
& +\operatorname{Var}(X)^{\frac{p}{2}}\left\|\sum_{m=1}^{N-1} \sum_{\substack{v \in S_{m}}} \sum_{\substack{x \in S_{m+1} \\
x \succeq v}}\left(\sum_{n=m+1}^{N}(\mathbb{E}[X])^{n-m-1} \sum_{\substack{w \in S_{n} \\
w \succeq x}} a(w)\right)^{2} \prod_{u \preceq v} X(u)^{2}\right\|_{\frac{p}{2}},
\end{aligned}
$$

where the first constant depend only on $\mathbb{E}\left[X^{p}\right]$ and p and the second constant depends on $\mathbb{E}\left[X^{p}\right]$ and p and the number $\left|S_{1}\right|$ of children of the root of the tree.

Consequences

The new random variable \tilde{Z}_{N-1} has the same structure as Z_{n} :

$$
\tilde{Z}_{N-1}=\tilde{a}(\rho)+\sum_{m=1}^{N-1} \sum_{v \in S_{m}} \tilde{a}(v) \prod_{u \preceq v} \tilde{X}(u)
$$

where $\tilde{X}(u)=X(u)^{2}$ and

$$
\begin{aligned}
& \tilde{a}(\rho)=\left(a(\rho)+\sum_{n=1}^{N} \sum_{v \in S_{n}} a(v)(\mathbb{E}[X])^{n}\right)^{2} \\
+ & \sum_{v \in S_{1}}\left(\sum_{n=1}^{N}(\mathbb{E}[X])^{n-1} \sum_{w \in S_{n}, w \succeq v} a(w)\right)^{2} \operatorname{Var}(X)
\end{aligned}
$$

and for $v \in S_{m}(1 \leq m \leq N-1)$,

$$
\tilde{a}(v)=\sum_{x \in S_{m+1}, x \succeq v}\left(\sum_{n=m+1}^{N}(\mathbb{E}[X])^{n-m-1} \sum_{\substack{w \in S_{n} \\ w \succeq x}} a(w)\right)^{2} \operatorname{Var}(X) .
$$

Main tools

Martingale inequalities

- Burkholder inequalities
- Burkholder-Rosenthal inequalities

Consequences

Corollary (Application in canonical Mandelbrot's situation)
Let N be a positive integer and $p \geq 1$. If

$$
a(\rho)=0, \quad \mathbb{E}[X]=1 .
$$

and

$$
a(v)=0, \quad \forall v \notin S_{N}, \quad a(v)=\frac{1}{b^{N}}, \quad \forall v \in S_{N} .
$$

Then $\left\|Z_{N}\right\|_{p}<\infty$ if and only if $\mathbb{E}\left[X^{p}\right]<b^{p-1}$. Moreover, we have

$$
\begin{cases}\lim _{N \rightarrow \infty} \frac{\log \left\|Z_{N}\right\|_{p}^{p}}{N}=\log \frac{\mathbb{E}\left[X^{p}\right]}{b^{p-1}} & \mathbb{E}\left[X^{p}\right]>b^{p-1} \\ \lim _{N \rightarrow \infty} \frac{\log \left\|Z_{N}\right\|_{p}^{p}}{\log N}=1 & \mathbb{E}\left[X^{p}\right]=b^{p-1} .\end{cases}
$$

Aihua Fan's result

- Let $P=\left(p_{i, j}\right)$ be a primitive transition matrix of a Markov chain indexed by $\{0,1,2, \ldots, b-1\}$, i.e. $P^{m}>0$ for some $m \geqslant 1$.
- For any $p \in \mathbb{R}$, let $\rho(p)$ be the spectral radius of the matrix $P(p)$ defined by $\left(p_{i, j}^{p}\right)$.

$$
P(p)=\left(\begin{array}{cccc}
p_{0,0}^{p} & p_{0,1}^{p} & \cdots & p_{0, b-1}^{p} \\
p_{1,0}^{p} & p_{1,1}^{p} & \cdots & p_{1, b-1}^{p} \\
\vdots & \vdots & \ddots & \vdots \\
p_{b-1,0}^{p} & p_{b-1,1}^{p} & \cdots & p_{b-1, b-1}^{p}
\end{array}\right)
$$

The function $\rho(p)$ is real analytic.

Theorem (Fan, 2002)
If

$$
a(v)=0, \quad v \notin S_{N} ; \quad a(v)=\prod_{i=0}^{N-1} P\left(v_{i}, v_{i+1}\right)=P^{(N)}(v)
$$

Then $\sup _{N \geq 1}\left\|Z_{N}\right\|_{p}<\infty$ for $p>1$ if and only if $\mathbb{E}\left[X^{p}\right] \rho(p)<1$;
We can recover this result by our new method.

Burkholder theorem

Let $M=\left\{\left(M_{i}, \mathcal{F}_{i}\right): i=0, \ldots, n\right\}$ be a martingale. Define martingale increments
$D_{0}(M)=M_{0}, D_{1}(M)=M_{1}, \quad D_{i}(M)=M_{i}-M_{i-1}, \quad i=2, \ldots, n$.
The quadratic variation process is defined as

$$
Q_{i}=D_{0}^{2}(M)+\ldots D_{i}^{2}(M) \quad \text { for } i=0, \ldots, n
$$

Theorem (Burkholder inequality)
For any $p \in(1, \infty)$, we have

$$
\left\|M_{n}\right\|_{p} \asymp\left\|\sqrt{Q_{n}}\right\|_{p}
$$

where the constants depend only on p.

Burkholder-Rosenthal theorem

For $n \geq 1$, the conditional square function of M is defined by

$$
s_{n}(M)=\left[\sum_{i=0}^{n} \mathbb{E}\left(\left|D_{i}(M)\right|^{2} \mid \mathcal{F}_{i-1}\right)\right]^{1 / 2}, \quad n=0,1,2, \ldots
$$

Theorem (Burkholder-Rosenthal inequality)
For any $p \in[2, \infty)$, we have

$$
\left\|M_{n}\right\|_{p} \asymp\left\|s_{n}(M)\right\|_{p}+\left\|\left(\sum_{i=0}^{n}\left|D_{i}(M)\right|^{p}\right)^{1 / p}\right\|_{p}
$$

where the constants depend only on p.

Thank you for your attention!

