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1. Background

Set V(x,R) := Vol(B(x,R)). We say that (D) holds if

(D) V(x, 2R) ≤ CV(x,R), ∀ x ∈ X &R > 0.

An upper Gaussian bound of the heat kernel holds, if

(UE) ht (x, y) ≤
C

V(x,
√

t)
exp

{
−

d(x, y)2

ct

}
.

The Li-Yau estimate holds for the heat kernel if

(LY) ht (x, y) ∼
C

V(x,
√

t)
exp

{
−

d(x, y)2

ct

}
.
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1. Background

Definition (Poincaré inequality)
We say a Poincaré inequality (P2) holds, if there exists CP > 0 s.t. for any
ball B = B(x, r), and any smooth function f on B it holds

(P2)

?
B
|f − fB | dµ ≤ CP r

(?
B
|∇f |2 dµ

)1/2

.

A local Poincaré inequality (P2, loc ) holds if for any r0 > 0, there exists
CP(r0) such that the above inequality holds for any ball with radius less
than r0.
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1. Background

Due to Saloff-Coste and Grigor’yan, it is well-known that on a
manifold, the following conditions are equivalent:

1 (D) and (P2) hold;

2 a parabolic Harnack inequality for the heat equation ∆u = ∂
∂t u holds.

3 Li-Yau estimate holds.

Remark
(i) An important consequence of the above result, in view of (1), is that
conditions (2) & (3) are invariant under quasi-isometries (biLipschitz map).
(ii) Obviously (D) + (P2) or equivalently (LY) implies (UE).
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1. Background

Definition
Let p ∈ (2,∞]. We say that the quantitative reverse Hölder inequality for
gradients of harmonic functions (for short, (RHp)) holds, if for every
u ∈ W1,2(2B), B = B(x0,R), satisfying ∆u = 0 in 2B, it holds

(RHp).

(?
B
|∇u|p dµ

)1/p

≤
C
R

?
2B
|u| dµ,

Remark

By using Caccioppli’s inequality, it’s easy to see that (R̃Hp) implies (RHp),

(R̃Hp)

(?
B
|∇u|p dµ

)1/p

≤ C
?

2B
|∇u| dµ

they are equivalent if one has (P2). In general (RHp) is weaker than (R̃Hp).
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1. Background

Theorem (Coulhon-J.-Koskela-Sikora ’20)
Assume that (D) and (UE) hold on (M, d, µ). Then TFAE:
(i) (RH∞) holds;
(ii) (GLY∞) holds: i.e., ∃C , c > 0 such that ∀ t > 0 and a.e. x, y ∈ X it
holds

(GLY∞) |∇xht (x, y)| ≤
C

√
tV(y,

√
t)

exp
{
−

d(x, y)2

ct

}
.

(iii) (G∞) holds: i.e., for each t > 0 it holds ‖|∇Ht |‖∞→∞ ≤ C/
√

t .
(iv) (GBE) holds: i.e., ∃C , c > 0 such that ∀ t > 0 and ∀ f ∈ W1,2(X) and
a.e. x ∈ X that

|∇Ht f(x)|2 ≤ CHct (|∇f |2)(x).
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1. Background

Theorem (Coulhon-J.-Koskela-Sikora ’20)
Assume that (D), (UE) and (P2, loc ) hold (in particular (P2)). Let
p0 ∈ (2,∞). Then TFAE:
(i) (RHp0) holds;
(ii) (GLYp0) holds: there exists γ > 0 such that for each t > 0 and a.e.
y ∈ X it holds

(GLYp0)

∫
X
|∇xht (x, y)|p0 exp

{
γd(x, y)2/t

}
dµ(x) ≤

C

tp0/2[V(y,
√

t)]p0−1
.

(iii) (Gp0) holds: the gradient heat semigroup |∇Ht | is bounded on Lp0(X)
for each t > 0 with

(Gp0) ‖|∇Ht |‖p0→p0 ≤ C/
√

t .
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1. Background

Remark
(i) A typical example where (D), (UE) and (P2, loc ) hold, but not (P2), is a
Riemannian manifold, obtained by gluing finite Euclidean ends together
through a compact manifold.

(ii) Suppose that V(x, r) . rN for some N > 2. Then for p > N, (RHp)
implies that if ∆u = 0 in M, then(∫

B
|∇u|p dµ

)1/p

≤
Cµ(B)1/p

R

?
2B
|u−u(xB)| dµ . RN/p−1

?
2B
|u−u(xB)| dµ.

This implies that there is no harmonic function of growth less than
d(x, xB)1−N/p other than constant, and therefore, M cannot have more than
one end by the results on harmonic functions of Li-Tam’92.
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2. Gluing manifolds satisfying doubling condition

Let M be a non-compact, connected manifold. We simply recognize
M as the union of a compact subset M0, and finitely many ends {Ei}1≤i≤k ,
i.e., M = M0 ∪ ∪iEi .

Doubling: (D) together with connectivity implies that there exists
0 < N < ∞ such that

(DN)
V(x,R)

V(x, r)
.

(
R
r

)N

,∀x ∈ M &1 < r < R < ∞,

and n ∈ (0,N] such that for a fixed xM ∈ M0

(RDn)

(
R
r

)n

.
V(xM ,R)

V(xM , r)
, 1 < r < R < ∞.
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2. Gluing manifolds satisfying doubling condition

Theorem (J. 2021)
Assume that (DN) and (RDn) hold on M = M0 ∪ ∪iEi with 2 < n ≤ N < ∞.
Suppose that (UE) holds, and the L2-Poincaré inequality (P2) holds for all
remote balls B (i.e., 2B ∩M0 = ∅). Let p0 ∈ (2, n). Then TFAE:
(i) (Gp0) holds, i.e., ‖|∇et∆|‖p0→p0 ≤

C√
t
.

(ii) (GLYp0) holds: there exists γ > 0 such that for each t > 0 and a.e.
y ∈ X it holds

(GLYp0)

∫
X
|∇xht (x, y)|p0 exp

{
γd(x, y)2/t

}
dµ(x) ≤

C

tp0/2[V(y,
√

t)]p0−1
.

(iii) (RHp0) holds, i.e., for any harmonic function u on a ball B(x, 2r), it
holds

(RHp0)

(?
B
|∇u|p0 dµ

)1/p0

≤
C
r

?
2B
|u| dµ.
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2. Gluing manifolds satisfying doubling condition

Theorem (J. 2021)
Assume that (DN) and (RDn) hold on M with 2 < n ≤ N < ∞. Suppose
that (UE) and the L2-Poincaré inequality (P2) holds for remote balls B. Let
p ∈ (2, n). Then TFAE:
(i) (RHp) holds.
(ii) (RHE

p ) holds, where (RHE
p ) means that there exists C > 0 such that for

any ball B, with 3B ∩M0 = ∅, and any harmonic function u on 2B, it holds

(RHE
p )

(?
B
|∇u|p dµ

)1/p

≤
C
rB

?
2B
|u| dµ.

Remark

If RicM(x) ≥ − CM
[d(x,xM)+1]2

, then (RHE
∞) holds.
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2. Gluing manifolds satisfying doubling condition

Theorem (J. 2021)
Let k ≥ 2. Suppose that for each 1 ≤ i ≤ k , Mi is a complete non-compact
manifold where (D), (UE) and the L2-Poincaré inequality (P2) holds for
remote balls B (2B ∩M0 = ∅).

Assume that the gluing manifold M := M1# · · ·#Mk satisfies (DN) and
(RDn) for some 2 < n ≤ N < ∞.

Then if for some p ∈ (2, n), (RHp) holds on each Mi , (RHp) holds on M.
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2. Gluing manifolds satisfying doubling condition

Theorem (J. 2021)
Assume that (DN) holds on M with 0 < N < ∞, and that (UE) and (PE

2 )
hold. Let p ∈ (N ∨ 2,∞). Then the following statements are equivalent.
(i) (RHp) holds, i.e. for any ball B and any harmonic function u on 2B, it
holds

(RHp)

(?
B
|∇u|p dµ

)1/p

≤
C
rB

?
2B
|u| dµ.

(ii) (Gp) holds, i.e., ‖|∇et∆|‖p→p ≤
C√

t
.

Moreover, if M is non-parabolic, then any of the conditions implies that M
can have only one end.
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2. Gluing manifolds satisfying doubling condition

Corollary (J. 2021)
Assume that (DN) holds on M with 0 < N < ∞, and that (UE) and the
L2-Poincaré inequality (P2) holds for all balls B such that 2B ∩M0 = ∅. If
there exists a non-constant harmonic function u on M with the growth

u(x) = O(d(x, o)α) as d(x, o)→ ∞

for some α ∈ [0, 1) and a fixed o ∈ M, then (Rp) does not hold for any
p > N ∨ 2 satisfying p(1 − α) ≥ N.
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3. The non-doubling case

We next consider non-compact manifolds with ends of different
volume growth, M = M1# · · ·#M`, for instance, Rn#(Rm ×Mn−m).

E0

E1

E2

Ek

Figure: A manifold with non-doubling volume
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3. The non-doubling case

let B(x, r) (resp. Bi(x, r) with 1 ≤ i ≤ `) denote the geodesic ball in M
(resp. Mi). We set

|x | := sup
y∈E0

{d(x, y)}, V(x, r) := V(B(x, r)),

Vi(x, r) := Vi(Bi(x, r)), Vi(r) := Vi(oi , r),

where oi ∈ ∂Ei is a fixed reference point. Note that ∂Ei is the set that
connecting Ei = Mi \ Ki to E0, and it always holds that

d(x, y) ≤ |x |+ |y |. (3.1)
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3. The non-doubling case

We shall assume that for each Mi , (D) and (UE) holds.

Moreover, for some xi ∈ Mi and all R ≥ r ≥ 1, it holds either

ci

(
R
r

)2

≤
Vi(xi ,R)

Vi(xi , r)
≤ Ci

(
R
r

)2

,

or for some ni > 2

ci

(
R
r

)ni

≤
Vi(xi ,R)

Vi(xi , r)
.
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3. The non-doubling case

Let

H(x, t) := min

1;
|x |2

Vix (|x |)
+

(∫ t

|x |2

ds

Vix (
√

s)

)
+

 ,
where (·)+ denotes the non-negative part and ix denotes the index of the
end that x belongs to.

Under our assumptions of the volume growth and the doubling
condition,

H(x, t) ∼

 |x |2

Vix (|x |) , nix > 2

1, nix = 2

Therefore, we have the uniform bound

H(x, t) .
|x |2

Vix (|x |)
. 1.
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3. The non-doubling case

Theorem (Grigor’yan & Saloff-Coste 2009)
Let M = M1# · · ·#M`, where for each Mi , (D) and (UE) holds.
(i) The small time heat kernel Gaussian upper bounds hold, namely

ht (x, y) .
1

V(x,
√

t)
exp

(
−c

d(x, y)2

t

)
, ∀ 0 < t ≤ 1, x, y ∈ M.

(ii) For t > 1 and x, y ∈ Ei (1 ≤ i ≤ `),

ht (x, y)

.

(
1

V0(
√

t)

|x |2

Vi(|x |)
|y |2

Vi(|y |)
+

1

Vi(x,
√

t)

|y |2

Vi(|y |)
+

1

Vi(y,
√

t)

|x |2

Vi(|x |)

)
e−c |x |

2+|y |2

t

+ min
(

1

Vi(x,
√

t)
,

1

Vi(y,
√

t)

)
exp

{
− c

d(x, y)2

t

}
,
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3. The non-doubling case

Theorem
(iii) For t > 1 and x ∈ Ei , y ∈ Ej , where 0 ≤ i, j ≤ ` and i , j, it holds that

ht (x, y) .

(
1

V0(
√

t)

|x |2

Vi(|x |)
|y |2

Vj(|y |)
+

1

Vi(x,
√

t)

|y |2

Vj(|y |)

+
1

Vj(y,
√

t)

|x |2

Vi(|x |)

)
e−c |x |

2+|y |2

t .
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3. The non-doubling case

By the above Grigor’yan & Saloff-Coste theory, we see that if M has
Ricci curvature bound, then it holds that

|∇xht (x, y)| .
1

√
tV(x,

√
t)

exp
(
−c

d(x, y)2

t

)
, ∀ 0 < t ≤ 1, x, y ∈ M.

Qustion What about large time behavior of |∇xht (x, y)|?
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3. The non-doubling case

Theorem (Davies)

Suppose that δ ∈ (0, 1), ε ∈ (0, 1
8 ), x, y ∈ M and t > 0. Let a, b , c be

positive constants such that c ∈ (0, 1], and that

h(1−δ)t (x, x) ≤ a, h(1−δ)t (y, y) ≤ b , |hs(x, y)| ≤
√

abc

for all s ∈ ((1 − δ)t , (1 + δ)t). Then for any m ∈ N, it holds∣∣∣∣∣ ∂m

∂tm ht (x, y)

∣∣∣∣∣ ≤ m!

(εδt)m

√
abc1−3ε .
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3. The non-doubling case

The case i = j
Set

K(x, t) = max

 C

Vix (x,
√

t)
,

|x |2

V0(
√

t)Vix (|x |)2

 .
Then

ht (x, y) .
√

K(x, t)K(y, t) exp
(
−

d(x, y)2

ct

)
,

which together with Davies’ theorem implies that

t |∂tht (x, y)| .
√

K(x, t)K(y, t) exp
(
−

d(x, y)2

ct

)
.

Therefore, if RicM(x) ≥ − CM
[d(x,xM)+1]2

, then

|∇xht (x, y)| .
1

√
t ∧ |x |

√
K(x, t)K(y, t) exp

(
−

d(x, y)2

ct

)
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3. The non-doubling case

The case i , j

t |∂tht (x, y)| . (K(x, t)K(y, t))3ε/2


(

H(x,t)H(y,t)
V0(
√

t)
+

H(y,t)
Vix (
√

t)
+

H(x,t)
Viy (
√

t)

)
exp

(
|x |2+|y |2

ct

)

1−3ε

Therefore, if RicM(x) ≥ − CM
[d(x,xM)+1]2

, then

|∇xht (x, y)| .
(K(x, t)K(y, t))3ε/2

√
t ∧ |x |


(

H(x,t)H(y,t)
V0(
√

t)
+

H(y,t)
Vix (
√

t)
+

H(x,t)
Viy (
√

t)

)
exp

(
|x |2+|y |2

ct

)

1−3ε
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3. The non-doubling case

What we expect is: Let n0 := min{ni}. Recall that ni ≥ 2 satisfying

ci

(
R
r

)ni

≤
Vi(xi ,R)

Vi(xi , r)
.

Suppose that n0 > 2. Then TFAE: for 2 < p0 < n0,
(i) (Gp0) holds, i.e., ‖|∇et∆|‖p0→p0 ≤

C√
t
.

(ii) (GLYp0) holds:

(GLYp0)

∫
X
|∇xht (x, y)|p0 exp

{
γd(x, y)2/t

}
dµ(x) ≤

C

tp0/2[V(y,
√

t)]p0−1
.

(iii) (RHE
p ) holds, where (RHE

p ) means that there exists C > 0 such
that for any ball B, with 3B ∩M0 = ∅, and any harmonic function u on 2B,
it holds

(RHE
p )

(?
B
|∇u|p dµ

)1/p

≤
C
rB

?
2B
|u| dµ.
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4. Application to the Riesz transform

Riesz tranforms on manifolds M: Let ∆ be the Laplace-Beltrami
operator on M. We consider the Riesz transform ∇(−∆)−1/2 on M, where
(−∆)−1/2 is given as

(−∆)−1/2 =
1
√
π

∫ ∞

0
∇es∆ ds

√
s
.

One considers

∇(−∆)−1/2 =
1
√
π

∫ ∞

0
∇es∆ ds

√
s
.

We always have for f ∈ C∞c (M),

‖∇(−∆)−1/2f‖2 = ‖f‖2.
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4. Application to the Riesz transform

For p > 2, consider the following conditions:
(i) (RHp) holds: for any ball B and any harmonic function u on 2B,

(RHp)

(?
B
|∇u|p dµ

)1/p

≤
C
rB

?
2B
|u| dµ.

(ii) (GLYp) holds:

(GLYp)

∫
X
|∇xht (x, y)|p exp

{
γd(x, y)2/t

}
dµ(x) ≤

C

tp0/2[V(y,
√

t)]p−1
.

(iii) (Gp) holds:

(Gp) ‖|∇Ht |‖p→p ≤ C/
√

t .

(iv) (Rp) holds: ‖∇(−∆)−1/2f‖p ≤ C‖f‖p .
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4. Application to the Riesz transform

If (D) and (P2) hold, equivalently (LY), then by
Auscher-Coulhon-Duong-Hofmann 2004 and Coulhon-J.-Koskela-Sikora
2020, for any 2 < p < ∞

(RHp)⇔ (GLYp)⇔ (Gp)⇔ (Rp);

If (D), (UE) and (PE
2 ) hold, then by J. 2021, for 2 < p < n0,

(RHp)⇔ (GLYp)⇔ (Gp)⇔ (Rp);

If M = M1# · · ·M`, assuming each Mi satisfies (D), (UE) and (PE
2 ),

then we expect that 2 < p < n0,

(RHE
p )⇔ (GLYp)⇔ (Gp)⇔ (Rp).
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4. Application to the Riesz transform

Theorem (Coulhon-Duong-Li, 2003)
On any complete manifold, the Littlewood-Paley function

g∆(f)(x) =

(∫ ∞

0
|∇et∆f(x)|2 dt

)1/2

is bounded on Lp(M) for 1 < p < 2.

Proof Set u(x, t) := et∆f(x), where 0 ≤ f ∈ C∞c (M). For 1 < q < 2,

|∇u(y, t)|2 =
1

q(q − 1)
u(y, t)2−qJ(y, t),

where J(y, t) = −(∂t + ∆)u(y, t)q. Note that
∫

M ∆u(y, t)q = 0 and
J(y, t) ≥ 0.
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4. Application to the Riesz transform

This implies that

g∆(f)(x) ≤ sup
t>0
|u(x, t)|

2−q
2

(∫ ∞

0

1
q(q − 1)

J(x, t) dt
)1/2

,

and hence,

‖g∆(f)‖q ≤ C

∥∥∥∥∥∥sup
t>0
|u(x, t)|

(2−q)q
2

∥∥∥∥∥∥
1
q

2
2−q

(∫
M

∫ ∞

0
J(x, t) dt dµ

)1/2

≤ C‖f‖
2−q

2
q

(∫
M

∫ ∞

0
−∂tu(x, t)q dt dµ

)1/2

≤ C‖f‖
2−q

2
q ‖f‖

q/2
q

≤ C‖f‖q.
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4. Application to the Riesz transform

Conjecture (Coulhon-Duong, 2003)
The Riesz transform ∇(−∆)−1/2 is bounded on Lp(M) for 1 < p < 2 on
complete manifolds.
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4. Application to the Riesz transform

Theorem (J.-Li-Lin, 2022)
Let 2 ≤ ` ∈ N. Suppose that {Mi}

`
i=1 are complete, connected and

non-collapsed manifolds of the same dimension, and each Mi satisfies (D)
and (UE). Moreover, assume that for each i, for some xi ∈ Mi and all
R ≥ r ≥ 1, it holds either

ci

(
R
r

)2

≤
Vi(xi ,R)

Vi(xi , r)
≤ Ci

(
R
r

)2

,

or for some ni > 2

ci

(
R
r

)ni

≤
Vi(xi ,R)

Vi(xi , r)
.

Let M = M1#M2# · · ·#M`. Then the Riesz transform ∇(−∆)−1/2 is
bounded on Lp(M) for each 1 < p < 2.

R. Jiang (CNU) Riesz transforms March 23, 2024 33 / 49



4. Application to the Riesz transform

Theorem (J.-Li-Li-Shen 2024)

Let M = M1#M2# · · ·#M` (2 ≤ ` ∈ N) be a connected sum of complete,
non-compact, connected and non-collapsed manifolds, and each Mi

satisfies (LY) and (RCA).
Assume that for each Mi , one of the following two conditions holds:
(i) There exist constants ni > 2 and ci > 0 such that, for some xi ∈ Mi and
any 1 ≤ r ≤ R < ∞, ci

(
R
r

)ni
≤

Vi(xi ,R)
Vi(xi ,r)

.

(ii) There exist constants 1 ≤ ni ≤ 2, ci > 0 and Ci > 0 such that, for some
xi ∈ Mi and any 1 ≤ r ≤ R < ∞, ci

(
R
r

)ni
≤

Vi(xi ,R)
Vi(xi ,r)

≤ Ci

(
R
r

)ni
.

Suppose that there is some 1 ≤ i ≤ ` such that ni = 2, and it holds

1 ≤ min{ni : 1 ≤ i ≤ `} < 2 < max{ni : 1 ≤ i ≤ `}.

Then the Riesz transform ∇∆−1/2 is bounded on Lq(M) for each 1 < q < 2.
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4. Application to the Riesz transform

(RCA ) condition: there exists A > 1 such that, for all R > 0 large
enough and for any two points x, y ∈ M both at distance R from o, there is
a continuous path γ connecting x to y and staying in the annulus
B(o,AR) \ B(o,R/A).

Remark:
(i) We do not know how to prove weak (1, 1) boundedness. Our

method uses the mapping property of the operators ∇et∆ and t∆et∆,
which only have optimal bounds for p > 1.

(ii) The requirement of the case ni = 2 is stronger than the case
ni > 2, since ni = 2 corresponds to the critical case.

(iii) Since we only need a upper Gaussian bound of the heat kernel on
Mi , our result applies to any uniformly elliptic operators on these manifolds.
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4. Application to the Riesz transform

(iv) Our result can be applied to the case where the manifolds have
volume growth different from Ahlfors growth, which seems to be also new.
For α ∈ (0, 2), consider Rα := (R2, gα), where gα is a Riemannian metric
such that, in the polar coordinates (ρ, θ), for ρ > 1 it equals

gα = dρ2 + ρ2(α−1) dθ2.

The volume of balls B(x, r) on Rα, r > 1, has growth as

V(x, r) ∼

rα, |x | < r

min{r2, r |x |α−1}, |x | ≥ r .

In particular, V(0, r) ∼ rα for r > 1. Note that for α ∈ (0, 2), the exterior part
{ρ > 1} of Rα is isometric to a certain surface of revolution in R3 and the
Li-Yau estimate holds on Rα. For n ≥ 4, letM1 andM2 be closed
manifolds of dimension n − 4 and n − 2 respectively. Our result then
applies to the gluing manifolds Rn#(R2 × Rα ×M1) and
(R2 × Rα ×M1)#R2 ×M2.
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4. Application to the Riesz transform

Proposition
The operator ∇et∆ is bounded on Lp(M) for 1 < p ≤ 2 with

‖∇et∆‖p→p .p
1
√

t
, ∀t > 0.

Remark
The above proposition and the followings hold on any complete manifolds.
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4. Application to the Riesz transform

For 1 ≤ p < ∞, we say that an operator T satisfies the
Lp-Davies-Gaffney estimate, if

‖T(fχE)‖Lp(F) ≤ C exp
(
−

d(E,F)2

Ct

)
‖f‖Lp(E).

When p = 2, we shall say that T satisfies the Davies-Gaffney estimate for
short.

Proposition

The operators et∆,
√

t∇et∆ and t∆et∆ satisfy the Davies-Gaffney
estimate.

Using the Riesz-Thorin interpolation theorem, we further deduce that

Corollary

The operators et∆,
√

t∇et∆ and t∆et∆ satisfy Lp-Davies-Gaffney
estimate for 1 < p ≤ 2.
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4. Application to the Riesz transform

E0

E1

E2

The part away from the center

The part around the center

The Center

Ek

Figure: Decomposition of the manifold
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4. Application to the Riesz transform

Recall that for r ≥ 1,

F(r)
i := {x ∈ Ei : dist (x,E0) ≤ 2r}, 1 ≤ i ≤ `.

If λ is large enough, saying λ ≥ 100`, we set in the sequels,

Ri := Ri(λ) > 1 such that µ
(
F(Ri)

i

)
= λ.

It holds then that

µ(F(Ri)
i ) ∼ Vi(Ri) ∼ Vj(Rj) ∼ µ(F(Rj)

j ), ∀λ � 1, 1 ≤ i, j ≤ `.
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4. Application to the Riesz transform

Proposition

Under the assumptions of Theorem, for each p ∈ [1, 2), it holds that:

∥∥∥et∆
∥∥∥

Lp(F
(Ri )
i )→L2(Ej\F

(Rj )

j )
.

Rj
√

t
µ(F(Ri)

i )
1
2−

1
p , ∀t ≥ R2

j , λ � 1,

and

∥∥∥et∆
∥∥∥

Lp(F
(Ri )
i )→L∞(Ej\F

(Rj )

j )
.

R2
j

t
µ(F(Ri)

i )−
1
p , ∀t ≥ R2

j , λ � 1.
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4. Application to the Riesz transform

Hence, we obtain that∥∥∥∥∥∥et∆

∥∥∥∥∥∥
L1(F

(Ri )
i )→L∞(Ej\F

(Rj )

j )

.
1
t

R2
j

Vj(Rj)
, ∀t ≥ R2

j , λ � 1.

Next, recall that ‖e−t∆‖L1→L1 ≤ 1. Hence, the Riesz-Thorin
interpolation theorem implies that

∥∥∥∥∥∥et∆

∥∥∥∥∥∥
L1(F

(Ri )
i )→L2(Ej\F

(Rj )

j )

.
1
√

t

√√
R2

j

Vj(Rj)
, ∀t ≥ R2

j , λ � 1.
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4. Application to the Riesz transform

By the fact that µ(F(Ri)
i ) ∼ Vi(Ri) ∼ Vj(Rj), then it follows from the

Hölder inequality that∥∥∥∥∥∥et∆

∥∥∥∥∥∥
Lp(F

(Ri )
i )→L∞(Ej\F

(Rj )

j )

.
1
t

R2
j

Vj(Rj)
µ(F(Ri)

i )1− 1
p ∼

R2
j

t
µ(F(Ri)

i )−
1
p ,

and∥∥∥∥∥∥et∆

∥∥∥∥∥∥
Lp(F

(Ri )
i )→L2(Ej\F

(Rj )

j )

.
1
√

t

√√
R2

j

Vj(Rj)
µ(F(Ri)

i )1− 1
p ∼

√
R2

j

t
µ(F(Ri)

i )
1
2−

1
p .

This completes the proof.
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4. Application to the Riesz transform

We have the following main estimate

Proposition
Under the assumptions of the main Theorem, for each p ∈ (1, 2), it holds
that

‖t∆et∆‖
Lp(F

(Ri )
i )→L2(Ej\F

(Rj )

j )
.p µ(F(Ri)

i )
1
2−

1
p , ∀t ≥ R2

j , λ � 1.
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4. Application to the Riesz transform

Lemma

Let ε ∈ (0, 1/8). Then:
(i) We have that∣∣∣∣∣∣t ∂tht (x, y)

∣∣∣∣∣∣ .ε 1
t

s2

Vi(s)

1 +

(
Vi(s)

s2

) 3
2 ε

(
|y |2

Vi(|y |)

) 3
2 ε


.ε Vi(s)

3
2 ε−1

(
1

Vi(|y |)

) 3
2 ε

, ∀t ≥ s2 ≥ 1, x ∈ Ei \ F(s)
i , y ∈ F(s)

i .

(ii) It holds that for all 1 ≤ i , j ≤ `, r , s ≥ 1,∣∣∣∣∣∣t ∂tht (x, y)

∣∣∣∣∣∣ .ε Vj(s)
3
2 ε−1

(
1

Vi(|y |)

) 3
2 ε

, ∀t ≥ s2, x ∈ Ej \ F(s)
j , y ∈ F(r)

i .
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4. Application to the Riesz transform

It follows from previous Lemma that∥∥∥∥∥t∆et∆(fχ
F

(Ri )
i

)

∥∥∥∥∥
L∞(Ej\F

(Rj )

j )
.ε Vj(Rj)

3
2 ε−1

∫
F

(Ri )
i

|f(y)|

(
1

Vi(|y |)

) 3
2 ε

dµ(y).

Then by the Hölder inequality, we obtain that∥∥∥∥∥t∆et∆(fχ
F

(Ri )
i

)

∥∥∥∥∥
L∞(Ei\F

(Ri )
i )
.ε Vj(Rj)

3
2 ε−1 Vi(Ri)

1
p′ −

3
2 ε ‖f‖

Lp(F
(Ri )
i )

.ε

‖f‖
Lp(F

(Ri )
i )

µ(F(Ri)
i )1/p

,

since µ(F(Ri)
i ) ∼ Vi(Ri) ∼ Vj(Rj).
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4. Application to the Riesz transform

In conclusion, for any 1 < p < 2, by suitably choosing ε, we have that∥∥∥t∆et∆
∥∥∥

Lp(F
(Ri )
i )→L∞(Ej\F

(Rj )

j )
.p

1

µ(F(Ri)
i )1/p

.

On the other hand, the classical Littlewood-Paley-Stein theory says that∥∥∥t∆et∆
∥∥∥

Lp(F
(Ri )
i )→Lp(Ej\F

(Rj )

j )
.p 1, ∀ 1 < p < +∞.

The Hölder inequality implies that∥∥∥t∆et∆
∥∥∥

Lp(F
(Ri )
i )→L2(Ej\F

(Rj )

j )
.p µ(F(Ri)

i )
1
2−

1
p ,
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4. Application to the Riesz transform

The keys in the proof include:

(i) The theory of Coulhon-Duong;

(ii) Grigoryan-Saloff-Coste’s theory on heat kernels;

(iii) mapping property of et∆ and ∂et∆, including Lp-Davies-Gaffney
estimates, Lp(Fi)→ Lq(Ei\) type estimates; (where the method of Davies
plays a key role).
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Thank you!
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