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The setup

(Md , g) a Riemannian manifold with piecewise smooth
boundary (can be empty).

∆g is the Laplacian associated to the metric.

e1, e2, . . . is an orthonormal basis of Laplace eigenfunctions,
with Dirichlet (or Neumann) boundary conditions, with

∆gej = −λ2
j ej .

Definition

The Weyl counting function is given by

N(λ) = #{j : λj ≤ λ}.

N encodes the eigenvalues and their multiplicities.

Weyl law: N(λ) = CdVol(M)λd + O(λd−1).
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A quick example: M = [0, a]

∆g = ∂2
x .

For j = 1, 2, 3, . . .,

ej(x) =

√
2

a
sin(πjx/a).

λj =
π
a j .

N(λ) = ⌊aλπ ⌋.
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Can one hear the shape of a drum? [Kac ’66]

Question

If two planar domains have the same Weyl counting function
(isospectral), must they be isometric?

It helps that we can pull out geometric invariants from N(λ).

If M = Ω ⊂ R2 has smooth boundary,∫ ∞

−∞
e−tλ2

dN(λ) = tr(et∆) =
area(Ω)

4πt
− length(∂Ω)

8
√
πt

+ o(1).

We ‘hear’ the area of Ω and the length of ∂Ω.

By the isoperimetric inequality, if Ω is isospectral to a disk, it
must be a disk.
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History

Negative results:

[Milnor ’64] Exhibits a pair of isospectral 16-dimensional tori.

[Gordon-Webb-Wolpert ’92] Exhibit a pair of isospectral
polygons.

[Buser-Conway-Doyle-Semmler ’94] Generalized the method
and obtained more isospectral polygons.

Positive results:

[Kac ’66] The disk is spectrally unique amongst planar
domains.

Results for various classes of drums obtained by
Popov-Topalov, Vig, Hezari-Zelditch, and De
Simoi-Kaloshin-Wei.

[Hezari-Zelditch ’22] Ellipses of small eccentricity are
spectrally rigid.
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What do we hear when we strike a drum at a point?

Strike the drum at x ∈ M and let it vibrate. That is, solve

(∆− ∂2
t )u = 0 with

{
u(0) = 0

∂tu(0) = δx .

Write the harmonic expansion of u:

u(t, y) =
∑
j

sin(tλj)

λj
ej(y)ej(x).

The standing wave at frequency λ is given by

uλ(t, y) =
∑
λj=λ

sin(tλj)

λj
ej(y)ej(x).
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What do we hear when we strike a drum at a point?

The perceived volume of the frequency-λ overtone is the
energy

E (uλ) =
1

2

∫
M
|∇uλ|2 + |∂tuλ|2 =

1

2

∑
λj=λ

|ej(x)|2.

We hear the pointwise counting function:

Definition

The pointwise Weyl counting function at x is given by

Nx(λ) =
∑
λj≤λ

|ej(x)|2.
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Can one hear where a drum is struck?

If you know the geometry of a drum head, and you hear it
struck once, can you determine where it was struck up to
symmetry?

Precisely:

Question

Given M and x , y ∈ M with Nx(λ) = Ny (λ) for all λ, must there
be an isometry M → M taking x 7→ y?

If Nx(λ) = Ny (λ) for all λ, we say x and y are cospectral.

If there is an isometry M → M taking x 7→ y , we say x and y
are similar.

Our Question: Cospectrality =⇒ Similarity?
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Remarks on the pointwise counting function

The pointwise counting function is related to the Weyl
counting function by

N(λ) =

∫
M
Nx(λ) dx .

Many results (e.g. Weyl law, heat trace asymptotics) about
the counting function are proved by studying the pointwise
counting function and integrating.

The pointwise counting function is richly studied in its own
right.
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Example: A string with fixed ends

M = [0, a] with Dirichlet boundary conditions.

The first eigenspace is at λ = π/a.

Nx(π/a) =
2

a
sin2(πx/a).

This is enough to determine x up to reflection about the
midpoint.
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Example: Rectangles with fixed edges

M = [0, a]× [0, 1], 0 < a < 1.

Eigenbasis:

ej ,k(x , y) =
2√
a
sin(πjx/a) sin(πky), λj ,k = π

√
j2

a2
+ k2.

Both λ = π
√
1/a2 + 1 and π

√
1/a2 + 4 eigenspaces are

simple.

Both

4

a
sin2(πx/a) sin2(πy) and

4

a
sin2(πx/a) sin2(2πy)

are “audible.”
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Example: Rectangles with fixed edges

sin2(2πy)/ sin2(πy) =
4 cos2(πy) is audible.

y is determined up to
symmetry.

Dividing

4

a
sin2(πx/a) sin2(πy)

by sin2(πy) yields

4

a
sin2(πx/a),

which determines x up to
symmetry.
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A negative example

[Buser-Conway-Doyle-Semmler ’94] Produce a pair of
isospectral planar domains.

Each domain has a distinguished point.

Corresponding normalized eigenfunctions share the same
absolute values at the distinguished point.

Take M to be the disjoint union of the two domains.

Red points are cospectral but not similar.
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Audible quantities

Definition

Let S be any set. We say f : M → S is audible if it satisfies

f (x) = f (y) whenever Nx(λ) = Ny (λ) for all λ.

Scalar curvature K (x) at x is audible since∫ ∞

−∞
e−tλ2

dNx(λ) = et∆g (x , x)

= (4πt)−n/2
(
1 +

t

3
K (x) + O(t2)

)
.
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Two more examples

Torus:

z2 + (r − a)2 = 1, a > 1

K is an increasing function of r .

Spheroid:

r2 +
z2

a2
= 1, 0 < a ̸= 1

K is a monotone function of |z |.



Summary of known and unexplored examples

We have done:

Squares and rectanglesD,N

DisksD,N

Flat Klein bottles

Spheroids

Tori of revolution

We have not done :

Rectangular boxesD,N

TrianglesD,N

Planar ellipsesD,N

Triaxial ellipsoid

Hyperbolic surfaces

Trivial:

Spheres

Projective spheres

Flat tori
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Interpretation: Can you hear your location in a manifold?

You stand in a familiar room with your eyes closed and clap your
hands once. Can you determine where you are located within the
room, up to symmetry, only by listening to the resulting echos and
reverberations?

Note∫ ∞

−∞
cos(tλ) dNx(λ) = cos(t

√
−∆)(x , x) = cos(t

√
−∆)δx(x).

This is an audible distribution in t.

Nx is uniquely determined by this distribution.

RHS is the solution to the initial value problem

(∆− ∂2
t )u = 0,

{
u(0) = δx

∂tu(0) = 0

evaluated at x .
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Interpretation: Can you find a point by releasing Brownian
particles?

You stand at an unknown point x in some planar domain and
release Brownian particles that stop once they hit the boundary.
You tally those particles that pass near x again for each time
t > 0. Can you determine x up to symmetry?

For each t > 0 and x in the domain, let p(t, x , y) be the
probability density function for the position y of a Brownian
particle at time t which started from x .

p(t, x ; y) = e
1
2
t∆(x , y) =

∑
j

e−
1
2
tλ2

j ej(x)ej(y).

p(t, x , x) =
∑
j

e−
1
2
tλ2

j |ej(x)|2 =
∫ ∞

−∞
e−

1
2
tλ2

dNx(λ).

Extends naturally to graphs.
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Interpretation: Can you find a point by releasing quantum
particles?

Suppose you release a ‘constrained’ quantum particle at x , and you
know the likelihood of its energy being λ2 for each λ. Can you
determine x up to symmetry?

u(t, y) =

∫
M
e it∆g (y , z)δx(z)dz =

∑
λj

e itλ
2
j ej(x)ej(y).

solves the Schrödinger equation

(i∂t −∆g )u = 0 with u(0) = δx .

Release a ‘constrained’ quantum particle at x , then it
becomes the superposition of various quantum states.
Given an energy cap Λ, the probability of observing a state
with energy less or equal to λ2 is given by

PΛ(λ) =
Nx(λ)

Nx(Λ)
=

∑
λj≤λ |ej(x)|2∑
λj≤Λ |ej(x)|2

.
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You can hear where most drums are struck

Theorem [Wyman–X ’23]

Let M be a smooth, compact manifold without boundary with
dimM ≥ 2. Then, for a residual (comeager) class of Riemannian
metrics on M,

x = y if and only if x , y are cospectral.

If there are two cospectral points x ̸= y , then we can make a
conformal perturbation of the metric near x to disrupt the
equivalence.

We ensure there are enough such perturbations to avoid
topological obstructions.
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Surfaces that sound the same no matter where they are
struck

Theorem [Wang–Wyman–X ’23]

Suppose (M, g) is a boundary-less Riemannian surface
(dimM = 2) for which all points are cospectral. Then, the action
of the isometry group on M is transitive.

Unknown in dimM > 2.

Scalar curvature is audible, and hence constant.

Since dimM = 2, (M, g) is a quotient of a space form.

If M is a sphere, projective sphere, or flat torus, we are done.

We eliminate the case where M is a flat Klein bottle by direct
calculation.

We eliminate the case where M is a compact hyperbolic
quotient as well.
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Can one hear the shape of a drumstick?

Given a compact submanifold Hd ⊂ Mn.

Kuznecov Sum (Zelditch ’92)

NH(λ) :=
∑

λj≤λ

∣∣∫
H ej dVH

∣∣2 = Cn,d vol
d(H)λn−d + O(λn−d−1).

NH contains all acoustic information resulting from striking the
drum M with a drumstick of shape H.

Can you hear the shape of a drumstick? [Wyman–X. ’23]

Given M. If two submanifolds H1,H2 on M share the same NH(λ),
must there be an isometry of M → M mapping H1 to H2?

We established explicit formulate for the 2nd term in
Kuznecov sum.
Probably can be done for some special cases, e.g., H being a
geodesic sphere on some special M. No formal result yet.
Possibly false in general, given the history of Kac’s question.
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“Echolocation” on a finite graph

Nx and Brownian motion interpretations of our problem
extend naturally to many settings, including finite graphs.

If two vertices “sound the same”, they are cospectral; If a
graph automorphism maps one to the other, they are similar.
On lots of regular graphs “cospectrality ≠⇒ similarity”.

Figure: Minimal regular graph with non-similar cospectral pairs.
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Graphs that sound the same at all vertices

If all vertices are cospectral, the graph is walk-regular.

If all vertices are similar, the graph is vertex-transitive.
Must walk-regular graph be vertex-transitive? No.

Figure: Minimal walk-regular, non-transitive graph.

This graph is not planar.
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Walk-regular planar graph

Theorem [Kong–Wyman–X, in preparation]

All 3-connected planar walk-regular finite graph are
vertex-transitive.

We can classify all such graphs, non-trivial ones are the nets
of Archimedean solids.

Figure:
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Closing thoughts.

Are there some nice classes of manifolds for which you can
hear the point they are struck?

Conversely, are there any negative examples that are
topologically connected?

Can we say more for finite graphs?

Are there other natural settings that we can explore?
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Thank You!
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