On odd-normal numbers

Junqiang Zhang
Joint work with Malabika Pramanik

China University of Mining and Technology-Beijing
Heat kernel and related topics in Hangzhou, March 23, 2024

Normal number

Definition (Borel, 1909; Niven \& Zuckerman, 1951)

Let $b \in \mathbb{N} \backslash\{1\}$. A real number $x=0 . a_{1} a_{2} \cdots=\sum_{k=1}^{\infty} a_{k} b^{-k} \in$ $[0,1]$ is normal to base b (or b-normal for short) if, and only if, $\forall k \in \mathbb{N}$ and any combination $D_{k}=\left(d_{1}, \ldots, d_{k}\right)$ of k digits, $d_{i} \in\{0,1, \ldots, b-$ $1\}$,
$\lim _{N \rightarrow \infty} \frac{1}{N} \sharp\left\{0 \leq j \leq N-1:\left(a_{j+1}, \ldots, a_{j+k}\right)=\left(d_{1}, \ldots, d_{k}\right)\right\}=\frac{1}{b^{k}}$.

- $x=0.21134611377323113 \cdots, D_{3}=(1,1,3), b=10$.

Normal number

- É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Math. Palermo 27 (1909), 247-271.
- I. Niven \& H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math.

1 (1951), 103-109.

1) Rational numbers can not be normal to any base:

$$
\frac{1}{7}=0.142857142857 \cdots \quad(10-\text { ary expansion })
$$

where only the combination of $D_{6}=(1,4,2,8,5,7)$ occurs infinitely often.

Normal number

2) The explicit example of a real number normal to a given base:

$$
\xi_{c}:=0.1234567891011121314 \cdots
$$

(the sequence of all positive integers), is normal to base 10 .

- D. G. Champernowne, The construction of decimals normal in the scale of ten, J.

London Math. Soc. 8 (1933), 254-260.

Normal number

3) It is not known whether or not $\pi, e, \sqrt{2}, \ldots$ are normal to a fixed base.

Theorem 1 (Borel, 1909)

Almost every (Lebesgue measure) $x \in[0,1]$ is normal to all $b \geq 2$.

- Generally, it is difficult to find normal or non-normal numbers.
- Y. Bugeaud, Distribution modulo one and Diophantine approximation, Cambridge Tracts in Mathematics, 193. Cambridge University Press, Cambridge, 2012.

Normality \& uniform distribution

Theorem 2 (Wall, 1949)

Let $b \in \mathbb{N} \backslash\{1\}$. Then $x \in[0,1]$ is normal to base b if, and only if, the sequence $\left(b^{n} x\right)_{n \geq 0}$ is uniformly distributed modulo one.

- D. D. Wall, Normal numbers. PhD thesis, University of California, Berkeley, CA, 1949.
- A sequence $\left(x_{n}\right)_{n \geq 1}$ of real numbers is said to be uniformly distributed modulo one if, for any α, β with $0 \leq \alpha<\beta \leq 1$, the fractional part of x_{n}, denoted by $\left\{x_{n}\right\}$, satisfies

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sharp\left\{1 \leq n \leq N:\left\{x_{n}\right\} \in[\alpha, \beta)\right\}=\beta-\alpha .
$$

Normality \& uniform distribution

Theorem 3 (Weyl, 1916)

$x \in[0,1]$ is normal to base $b \in \mathbb{N} \backslash\{1\}$ if, and only if, for any $h \in \mathbb{Z} \backslash\{0\}$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} e^{-2 \pi i h b^{n} x}=0 \quad \text { (Weyl's criterion). }
$$

- H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins., Math. Ann. 77 (1916), 313-352.

Measure \& normality

Theorem 4 (Davenport-Erdős-LeVeque, 1963)

Let μ be a finite Borel measure on $[0,1]$, and $b \in \mathbb{N} \backslash\{1\}$. If, for any $h \in \mathbb{Z} \backslash\{0\}$,

$$
\sum_{N=1}^{\infty} \frac{1}{N} \int_{0}^{1}\left|\frac{1}{N} \sum_{n=0}^{N-1} e^{-2 \pi i h b^{n} x}\right|^{2} \mathrm{~d} \mu(x)<\infty,
$$

$$
\Longleftrightarrow \sum_{N=1}^{\infty} \frac{1}{N^{3}} \sum_{m, n=0}^{N-1}\left|\widehat{\mu}\left(h\left(b^{n}-b^{m}\right)\right)\right|<\infty
$$

then, for μ-a.e. $x \in[0,1]$ is normal to base b.

Measure \& normality

Example

Let $C_{1 / 3}$ be the middle 1/3 Cantor set, i.e.

$$
C_{1 / 3}=\left\{x \in[0,1]: x=\sum_{j=1}^{\infty} \varepsilon_{j} 3^{-j}, \quad \varepsilon_{j} \in\{0,2\}\right\}
$$

Any $x \in C_{1 / 3}$ is not 3-normal and $C_{1 / 3}$ can not support any Rajchman measure.

Rajchman measure

Definition (Rajchman measure)

Let μ be a finite Borel measure on $[0,1]$. If $\widehat{\mu}(n) \rightarrow \infty$ as $|n| \rightarrow \infty$, μ is called a Rajchman measure, where

$$
\widehat{\mu}(n):=\int_{0}^{1} e^{-2 \pi i n x} \mathrm{~d} \mu(x) .
$$

Question (Kahane \& Salem, 1964)

Can a set of non-normal numbers support a Rajchman measure?

- J. P. Kahane and R. Salem, Distribution modulo 1 and sets of uniqueness, Bull. Amer.

Math. Soc. 70 (1964), 259-261.

Set of uniqueness \& multiplicity

Definition

A set $E \subset[0,1]$ is called a set of uniqueness, if any trigonometric series of the form

$$
\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi i n x}=0 \quad \forall x \in[0,1] \backslash E \Longrightarrow c_{n} \equiv 0
$$

Otherwise, it is called a set of multiplicity. Let \mathcal{U} denote the set of all sets of uniqueness.

- Originated from 1869, Riemann, Heine, Cantor It is well known that

$$
\text { countable set } \subset \mathcal{U} \cap \mathrm{L} \text {. measurable } \subset \mathrm{L} \text {. null. }
$$

Set of uniqueness \& multiplicity

Theorem 5 (Piatetcki-Shapiro, 1952; Kahane \& Salem, 1963)
Let $E \subset[0,1]$ be a closed set and μ be a probability Borel measure on $[0,1]$ with $\mu(E)=1$. Then the following are equivalent:
(i) μ is a Rajchman measure;
(ii) E is a set of multiplicity.

Rajchman measure

- Back to Kahane \& Salem's question, it was answered in affirmative by Lyons for the set of numbers which are not 2-normal.
- R. Lyons, The measure of nonnormal sets, Invent. Math. 83 (1986), 605-616.
- The main objective of this talk is to study the further properties of Lyons's measure.

Lyons's measure

- Let $\left(K_{i}\right)_{i=1}^{\infty} \subset \mathbb{N}$ with $K_{i}>K_{i-1}, K_{0}=0$, and

$$
\liminf _{i \rightarrow \infty} \frac{K_{i}}{K_{i-1}}>1
$$

Suppose that $\left(\varepsilon_{i}\right)_{i=1}^{\infty} \subset[0,1]$ satisfying $\sum_{i} \varepsilon_{i}=\infty$. Define

$$
\mu:=\underset{i=1}{\underset{\sim}{*}}\left\{\underset{i}{\infty}\left\{\varepsilon_{i} \delta(0)+\left(1-\varepsilon_{i}\right) \underset{k=K_{i-1}+1}{K_{i}}\left[\frac{1}{2} \delta(0)+\frac{1}{2} \delta\left(2^{-k}\right)\right]\right\} .\right.
$$

$-\mu$ is a probability measure on $[0,1]$. If $\varepsilon_{i} \equiv 0$, then μ is Lebesgue measure on $[0,1]$.

Lyons's measure

For $2^{K_{i-1}-1} \leq n<2^{K_{i}-1}$,

$$
\begin{aligned}
|\widehat{\mu}(n)| & \leq \varepsilon_{i} \varepsilon_{i-1}+\varepsilon_{i}+\varepsilon_{i-1}+2^{-\left(K_{i}-K_{i-2}\right)}\left|\frac{1-e^{-2 \pi i n 2^{-K_{i-2}}}}{1-e^{-2 \pi i n 2^{-K_{i}}}}\right| \\
& \leq \varepsilon_{i} \varepsilon_{i-1}+\varepsilon_{i}+\varepsilon_{i-1}+2^{-\left(K_{i-1}-K_{i-2}\right)}
\end{aligned}
$$

Lyons's measure

- (Borel-Cantelli lemma) Let (Ω, \mathcal{F}, P) be a probability space. If the events $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ are independent, then $\sum_{i=1}^{\infty} P\left(A_{i}\right)=\infty$ implies $P\left(\limsup _{i \rightarrow \infty} A_{i}\right)=1$.
\rightarrow For any $x \in[0,1]$, let $x=\sum_{k=1}^{\infty} d_{k}(x) 2^{-k}$ be the binary expansion of x. Then

$$
A_{i}:=\left\{x \in[0,1]: d_{k}(x)=0 \text { for all } K_{i-1}+1 \leq k \leq K_{i}\right\}
$$

and

$$
\mu\left(A_{i}\right)=\varepsilon_{i}+\left(1-\varepsilon_{i}\right) 2^{K_{i-1}-K_{i}} .
$$

Main result

Let \mathcal{O} and \mathcal{E} denote respectively the set of all odd and even integers in $\mathbb{N} \backslash\{1\}$.

Theorem 6 (Pramanik-Z.,2024)

Let μ be the probability measure on $[0,1]$ constructed by Lyons, with $K_{i}:=K^{i\lfloor\sqrt{\log i}\rfloor}$ and $\varepsilon_{i}:=i^{-1}$ for some integer $K \geq 10$. Then for any $\kappa>0$, there exists $C_{\kappa}>0$ such that

$$
\begin{equation*}
|\widehat{\mu}(n)| \leq(\log \log |n|)^{-1+\kappa} \quad \forall n \in \mathbb{Z} \text { with }|n| \geq C_{\kappa} \tag{1}
\end{equation*}
$$

Moreover, μ-almost every $x \in[0,1]$ is not normal to any $b \in \mathcal{E}$, but normal to any $b \in \mathcal{O}$.

Main result

- The decay rate in (1) is sharp, up to κ-loss, in the following sense: It is known that if a set E supports a measure ν such that for some $\kappa>0,|\widehat{\nu}(n)| \leq C_{\kappa}(\log \log |n|)^{-1-\kappa}$, then ν-a.e. $x \in E$ is normal to all $b \geq 2$.
- A. Pollington, S. Velani, A. Zafeiropoulos, E. Zorin, Inhomogeneous Diophantine approximation on M_{0}-sets with restricted denominators, Int. Math. Res. Not. (2022), 8571-8643.

Proof overview

- Step 1: show that μ-almost every x is not normal to any $b \in \mathcal{E}$: Weyl's uniform distribution criterion.
- Step 2: show μ-almost every x is normal to every $b \in \mathcal{O}$: verifying Davenport-Erdös-LeVeque's theorem by using number-theoretic result of Schmidt.

Step 1

- $\mathcal{B}_{i}:=\left\{K_{i-1}+1, K_{i-1}+2, \ldots, K_{i}\right\}$,

$$
A_{i}:=\left\{x \in[0,1): d_{k}(x)=0 \text { for all } k \in \mathcal{B}_{i}\right\}
$$

$$
\begin{aligned}
A & :=\limsup _{i \rightarrow \infty} A_{i}=\bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} A_{i} \\
& =\left\{x \in[0,1]: d_{k}(x)=0 \text { for all } k \in \mathcal{B}_{i} \text { for infinitely many } i\right\}
\end{aligned}
$$

$\mu(A)=1$ and for all $x \in A$,

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \operatorname{Re}\left(e^{-2 \pi i b^{k} x}\right)=1, \quad \forall b \in 2 \mathbb{N}
$$

Step 2

- Applying Theorem of DEL, it aims to establish, for any odd integer $b \geq 2$,

$$
\sum_{N=1}^{\infty} N^{-3} \sum_{u=1}^{N} \sum_{v=1}^{N} \hat{\mu}\left(h b^{u}\left(b^{v}-1\right)\right)<\infty
$$

- For any $\eta:=\sum_{k=0}^{\infty} d_{k}(\eta) 2^{k} \in \mathbb{Z}$,

$$
\hat{\mu}(\eta)=\prod_{i=1}^{\infty}\left[\varepsilon_{i}+\left(1-\varepsilon_{i}\right) \mathcal{C}_{i}(\eta)\right]
$$

Step 2

$$
\mathcal{C}_{i}(\eta):=\prod_{k=K_{i-1}+1}^{K_{i}}\left[\frac{1}{2}\left(1+e^{-2 \pi i 2^{-k} \eta}\right)\right]
$$

and

$$
\frac{1}{2}\left(1+e^{-2 \pi i 2^{-k} \eta}\right)=e^{-\pi i 2^{-k} \eta} \cos \left(\pi 2^{-k} \eta\right)
$$

- If $\boldsymbol{\eta}_{i}:=\left\{d_{k}(\eta): K_{i-1}+1 \leq k \leq K_{i}\right\}$ are all 0 or 1 , then $\mathcal{C}_{i} \sim 1$ (independent of l). Long unbroken runs of single digits in $\boldsymbol{\eta}_{i}$ lead to relatively large value of \mathcal{C}_{i}.

Step 2

- This suggests that for \mathcal{C}_{i} to attain values that are significantly smaller than its maximum, consecutive digits in $\boldsymbol{\eta}_{i}$ must change, and change frequently.
- In the binary expansion of

$$
\eta:=h b^{u}\left(b^{v}-1\right)=\sum_{k=0}^{\infty} d_{k} 2^{k}
$$

for most of $(u, v) \in\{1, \ldots, N\}$, the digits $\left(d_{k}\right)_{k}$ change frequently.

Step 2

Lemma 7 (Schmidt, 1960)

Given any odd integer $r \in \mathbb{N} \backslash\{1\}$, there exists a constant $c(r)>0$ as follows. For any integer $\rho \in \mathbb{Z} \backslash\{0\}$, write $\rho:=\rho_{2} \rho_{2}^{\prime}$ with $\rho_{2}=2^{m}$ for some $m \in \mathbb{N} \cup\{0\}$ and $2 \nmid \rho_{2}^{\prime}$. Then for every $k \geq 1$ and every $\sigma \in\left\{0,1, \ldots, 2^{k}-1\right\}$,

$$
\sharp\left\{m \in\left\{0,1, \ldots, 2^{k}-1\right\}: \rho r^{m}=\sigma \quad \bmod 2^{k}\right\} \leq c(r) \rho_{2} .
$$

- W. M. Schmidt, On normal numbers, Pacific J. Math. 10 (1960), 661 - 672.

Step 2

- For any $k \in \mathbb{N}$ and $n \in\left\{0,1, \ldots, 3^{k}-1\right\}$, let

$$
r^{n}=\lambda_{0}(n) 3^{0}+\lambda_{1}(n) 3^{1}+\cdots+\lambda_{i}(n) 3^{i}+\cdots, \quad \lambda_{i}(n) \in\{0,1,2\}
$$

be the 3 -ary expansion of r^{n}.
Then $\left(\lambda_{l}(n), \lambda_{l+1}(n), \ldots, \lambda_{l+k-1}(n)\right)$ take precisely once every one of the 3^{k} possible values of $\{0,1,2\}^{k}$, as n runs from 0 to $3^{k}-1$, where $l \in \mathbb{N} \cup\{0\}$ is such that $r \equiv 1\left(\bmod 3^{l}\right)$ and $r \not \equiv 1$ $\left(\bmod 3^{l+1}\right)$.

- We say that $r, s \in \mathbb{N} \backslash\{1\}$ are multiplicatively dependent, and write

$$
r \sim s \quad \text { if } \quad \frac{\log r}{\log s} \in \mathbb{Q}, \quad \text { i.e., if } \exists m, n \in \mathbb{N} \text {, s.t. } r^{m}=s^{n}
$$

Otherwise, we put $r \nsim s$ and call r, s multiplicatively independent.

Normality \& non-normality to restricted bases

Theorem 8 (Schmidt, 1960)

(i) Let $r, s \in \mathbb{N} \backslash\{1\}$. If $r \sim s$, any $x \in[0,1]$ normal to base r is normal to base s.
(ii) For any $x \in C_{1 / 3}, x$ is normal to any base $b \nsim 3$.

- J. W. S. Cassels, On a problem of Steinhaus about normal numbers, Colloq. Math. 7
(1959), 95-101.
- W. M. Schmidt, On normal numbers, Pacific J. Math. 10 (1960), 661-672.

Normality \& non-normality to restricted bases

- For $\mathcal{B}, \mathcal{B}^{\prime} \subset \mathbb{N} \backslash\{1\}, \mathcal{B}$ and \mathcal{B}^{\prime} are called compatible if $\forall\left(b, b^{\prime}\right) \in$ $\mathcal{B} \times \mathcal{B}^{\prime}, b \nsim b^{\prime}$.
- For any compatible $\mathcal{B}, \mathcal{B}^{\prime}$, define

$$
\begin{aligned}
\mathcal{N}\left(\mathcal{B}, \mathcal{B}^{\prime}\right):=\{x \in[0,1]: & x \text { is normal to } \forall b \in \mathcal{B}, \\
& \text { but not normal to } \left.\forall b^{\prime} \in \mathcal{B}^{\prime}\right\} .
\end{aligned}
$$

- For any compatible $\mathcal{B} \cup \mathcal{B}^{\prime}=\mathbb{N} \backslash\{1\}$, Schmidt showed that $\mathcal{N}\left(\mathcal{B}, \mathcal{B}^{\prime}\right) \neq \emptyset$, and Pollington further showed that

$$
\operatorname{dim}_{\mathrm{H}} \mathcal{N}\left(\mathcal{B}, \mathcal{B}^{\prime}\right)=1
$$

Normality \& non-normality to restricted bases

- A. D. Pollington, The Hausdorff dimension of a set of normal numbers, Pacific J. Math. 95 (1981), 193-204.
- W. M. Schmidt, Über die Normalität von Zahlen zu verschiedenen Basen, Acta Arith. 7 (1961/62), 299-309.
- For different proof of the result

$$
\mathcal{N}\left(\mathcal{B}, \mathcal{B}^{\prime}\right) \neq \emptyset, \quad \text { and } \quad \operatorname{dim}_{\mathrm{H}} \mathcal{N}\left(\mathcal{B}, \mathcal{B}^{\prime}\right)=1,
$$

see also the work of Moran et al., using the Riesz product measure.

- G. Brown, W. Moran \& C. E. M. Pearce, Riesz products and normal numbers, J.

London Math. Soc. (2) 32 (1985), 12-18.

Normality \& non-normality to restricted bases

- G. Brown, W. Moran \& C. E. M. Pearce, Riesz products, Hausdorff dimension and normal numbers, Math. Proc. Camb. Phil. Soc. (1987), 529-540.
- W. Moran \& A. D. Pollington, Metrical results on normality to distinct bases, Journal of number theory (1995), 180-189.
- The set $\mathcal{N}\left(\mathcal{B}, \mathcal{B}^{\prime}\right)$ constructed by Schmidt and Pollington is an H-set, i.e. \exists some nonempty open interval $I \subset[0,1]$ and $0 \leq$ $n_{0}<n_{1}<n_{2}<\cdots$, s.t. for any $k \in \mathbb{N},\left(n_{k} \mathcal{N}\right) \cap I=\emptyset$.
- Rajchman showed that every H-set is a set of uniqueness, which can not support a Rajchman measure.

Normality \& non-normality to restricted bases

Question

For any compatible $\mathcal{B}, \mathcal{B}^{\prime}$ such that $\mathcal{B} \cup \mathcal{B}^{\prime}=\mathbb{N} \backslash\{1\}$, whether $\mathcal{N}\left(\mathcal{B}, \mathcal{B}^{\prime}\right)$ can support a Rajchman measure?

Thank you!

